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Ancient convergent losses of
Paraoxonase 1 yield potential risks
for modern marine mammals
Wynn K. Meyer1, Jerrica Jamison2, Rebecca Richter3, Stacy E. Woods4*,
Raghavendran Partha1, Amanda Kowalczyk1, Charles Kronk2, Maria Chikina1,
Robert K. Bonde5, Daniel E. Crocker6, Joseph Gaspard7, Janet M. Lanyon8,
Judit Marsillach3, Clement E. Furlong3,9, Nathan L. Clark1,10†

Mammals diversified by colonizing drastically different environments, with each transition
yielding numerous molecular changes, including losses of protein function. Though not
initially deleterious, these losses could subsequently carry deleterious pleiotropic
consequences. We have used phylogenetic methods to identify convergent functional
losses across independent marine mammal lineages. In one extreme case,
Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact
in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in
marine species’ blood plasma. This convergent loss is likely explained by parallel
shifts in marine ancestors’ lipid metabolism and/or bloodstream oxidative environment
affecting PON1’s role in fatty acid oxidation. PON1 loss also eliminates marine mammals’
main defense against neurotoxicity from specific man-made organophosphorus
compounds, implying potential risks in modern environments.

A
s the ancestors of aquatic marine mam-
mals adopted obligate aquatic lifestyles,
they evolved many adaptive changes, such
as those that improved locomotion and
respiration in and perception of their new

environment (1–3). Many of these morphological
and physiological changes occurred in parallel in
distinct lineages of marine mammals, including
cetaceans, pinnipeds, and sirenians. Although
convergent trait changes are frequently adaptive,
environmental transitions can also result in non-
adaptive convergent trait loss due to release from
functional constraint. Examples of convergently
reduced or lost traits include olfaction in marine
mammals (4–6), bitter taste receptors in car-
nivorous tetrapods (7), and eyes in subterranean
species (8–10). Any convergent evolutionary

change in the context of a given environment
can carry negative consequences in a different
environment as a result of pleiotropy (one ge-
netic locus influencing multiple phenotypes).
To characterize how mammals responded to

selective pressures imposed by the marine envi-
ronment, we identified genes that convergently
lost function in marine mammals. We identified
candidate pseudogenes with observed early stop
codons and/or frameshifts (genetic lesions) in
58 eutherian mammals’ genomes in a 100-way
vertebrate alignment (11). Using our predicted
pseudogene calls, we then tested, for each gene,
whether its pattern of functional loss was better
explained by a model with one loss rate through-
out the mammalian phylogeny or by amodel in
which the loss rate was dependent upon the ter-

restrial or marine state of a given branch in a
likelihood ratio test (LRT) (12). To ensure that our
results were not strongly influenced by errors in
pseudogene calling, we performedmanual checks
of lesion calls against reference genomes for
our top genes, along with comparisons of pseudo-
gene calls at highly conserved genes for marine
and terrestrial species (13).We used simulations
to estimate empirical gene-specific P values and
study-wide (multiple-test-corrected) false dis-
covery rates (FDR) for all genes (13) (Table 1 and
table S1). The set of genes with the strongest
evidence for a higher loss rate onmarine lineages
was strongly enriched for functions related to
chemosensation, driven by many olfactory and
taste receptors (tables S2 to S5). These results
are consistentwith previous behavioral, anatom-
ical, and genetic studies indicating a reduction of
smell and taste in marine mammals (5, 14, 15).
We also observed a notable pattern of con-

vergent loss in the marine environment at
Paraoxonase 1 (PON1) (Table 1) (13). PON1 en-
codes a bloodstream enzyme that reduces oxida-
tive damage to lipids in low- and high-density
lipoprotein (LDL and HDL) particles, poten-
tially preventing atherosclerotic plaque forma-
tion (16, 17) (Fig. 1A). PON1 also hydrolyzes the
oxon forms of specific organophosphate com-
pounds, such that it is the main line of defense
against some man-made pesticide by-products,
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Table 1. Top 10 manually validated genes with evidence for marine-specific loss. Loss rates represent the inferred instantaneous rates of transition from

functional gene (1) to pseudogene (0) per unit branch length under the relevant model in BayesTraits (12, 13), restricted to a maximum value of 100 (the default).

Gene

Loss rate

(independent)

Marine

loss rate

(dependent)

Terrestrial

loss rate

(dependent)

LRT

statistic

Empirical

P value FDR Description of gene product

PON1 0.672 49.7 0 22.24 3.08 × 10−6 0.0154 Paraoxonase 1
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR10Z1 1.15 100 0.467 19.99 7.25 × 10−6 0.0201 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR8D4 1.25 100 0.510 19.21 1.60 × 10−5 0.0201 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TAS2R1 1.32 100 0.535 19.20 1.60 × 10−5 0.0201 Taste receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR1F2P 2.03 100 1.18 15.86 5.40 × 10−5 0.0831 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

GSTM1 1.48 100 0.762 15.82 3.90 × 10−5 0.0831 Glutathione S-transferase mu 1
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR6K2 2.02 100 1.22 15.79 4.50 × 10−5 0.0831 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR51D1 1.13 49.3 0.466 15.59 8.60 × 10−5 0.0831 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TAAR5 1.17 48.2 0.484 15.16 9.90 × 10−5 0.0936 Trace amine–associated receptor 5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

OR4C13 1.77 100 0.915 14.88 7.00 × 10−5 0.0972 Olfactory receptor
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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including chlorpyrifos oxon and diazoxon (Fig.
1B) (18). The PON1 coding sequence contains
genetic lesions in the cetacean, pinniped, and
sirenian lineages but is intact in all 53 terrestrial
mammal genomes surveyed (Fig. 1C and table S1).

To estimate when PON1 function was lost in
the three marine mammal clades, we obtained
PON1 sequences for 14 additional species,
including three cetaceans, the dugong, and
two pinnipeds, and we estimated evolutionary

rates across the mammalian phylogeny (13)
(Fig. 1C and fig. S1). We observed shared genetic
lesions among all sequenced cetaceans and a
different shared lesion in sirenians (fig. S2), and
the inferred ratio of nonsynonymous to synony-
mous substitutions (dN/dS) was not significantly
different from one on the ancestral branches of
both clades (cetacean ancestor dN/dS = 1.09, P =
0.79; sirenian ancestor dN/dS = 1.20, P = 0.57).
This suggests that PON1 lost functional con-
straint in the ancestral cetacean lineage soon
after its split with the ancestral hippopotamid
lineage, approximately 53 million years (Ma)
ago [95% confidence interval (CI) lower bound,
34.5Ma ago] (13, 19). In sirenians, functional loss
occurred soon after the split with the ancestral
elephantid lineage, approximately 64 Ma ago
(lower bound, 41.7 Ma ago) (19).
In pinnipeds, we observed clear evidence of

PON1 functional loss only among a subset of
species within the family Phocidae, wherein
Weddell seal and Hawaiian monk seal PON1
sequences contained nonshared genetic lesions
(fig. S2). Because these branches are short, it is
difficult to estimate precisely when functional
loss occurred in pinnipeds; however, there was
likely at least one loss since the Phocidae-
Otarioidea split approximately 21 Ma ago (95%
CI, 0 to 21 Ma ago). This incomplete loss may
reflect either a difference between the selective
environments experienced by pinnipeds and
those experienced by other marine mammals
or pinnipeds’ more recent colonization of the
marine environment (pinnipeds, 24 Ma ago;
cetaceans, 44.7 to 37.3 Ma ago; sirenians, 47.1
to 43.9 Ma ago) (20).
PON1’s functional loss in marine mammals

may be related to its role in lipid metabolism via
fatty acid beta-oxidation (21) (tables S6 and S7).
The diets of both herbivorous and carnivorous
aquatic mammals contain a higher proportion
ofw-3 relative tow-6 polyunsaturated fatty acids
(PUFAs) than those of terrestrial mammals (22),
and these PUFAs differ in their capacity to sus-
tain oxidative damage (23). Marine and terrestrial
mammals also have vastly different antioxidant
profiles (24, 25), presumably because of the ex-
treme oxidative stress experienced during diving,
with repeated cycles of hypoxia and reperfusion.
Rewiring of either lipid metabolism or antiox-
idant networks in ancientmarinemammalsmay
have obviated the function of PON1. Supporting
the antioxidant hypothesis, the Weddell seal,
which carries PON1 lesions, is one of the longest-
diving pinnipeds known, in contrast to the
shorter-diving walrus and Antarctic fur seal,
which lack lesions but share an aquatic diet
(26). However, two semiaquatic mammals, the
sea otter and the beaver, which are more
moderate divers (26), also have either lesions
or substitutions at sites predicted to be necessary
for PON1 function (fig. S2 and table S8).
Whatever the cause, loss of PON1 function

may carry negative pleiotropic consequences
for the health of marine mammals repeatedly
exposed to man-made organophosphate com-
pounds. PON1 alone is protective against the
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Fig. 1. PON1 functions and evolutionary history. Illustration of PON1’s proposed roles in (A) preventing
oxidative damage to LDL and HDL (16, 17) and (B) detoxifying the oxon by-product or metabolite of a
common organophosphorus pesticide, chlorpyrifos (27). LPC, lysophosphatidylcholine. (C) Evolutionary
rate of the PON1 coding sequence across the phylogeny of 62 eutherian mammals. Branch lengths
represent dN, and colors represent dN/dS (see the color legend). dN/dS values greater than 1.2 were set to
1.2. Blue, marine species; y, genetic lesion(s) present.

Fig. 2. Blood plasma enzymatic activity against two organophosphate-derived substrates. Points
represent rates of hydrolysis of chlorpyrifos oxon (left) or diazoxon (right) in micromoles per minute
per milliliter for plasma from marine and semiaquatic species (in blue) and terrestrial out-groups.Values
for sheep, goats, and rats are from Furlong et al. (35), who performed assays under the same
experimental conditions used in this study.Vertical solid lines indicate no activity, and horizontal dashed
lines separate species from different evolutionary clades. Control assays of alkaline phosphatase
activity show that samples were not degraded (fig. S3).WT, wild-type.
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highly toxic oxon forms of the heavily used
pesticides chlorpyrifos and diazinon; these
oxons are formed from the parent compounds
in the environment and in vivo by cytochromes
P450 (27) (Fig. 1B). We tested blood plasma
from six marine and semiaquatic species for
the capacity to hydrolyze these and other PON1
substrates (Fig. 2 and fig. S3). The plasma from
all but one of the assayed marine and semi-
aquatic species showed activity levels against
the PON1 substrates that more closely resembled
those of the Pon1 knockout (Pon1−/−) mouse than
those of terrestrial out-groups. Thus, the genetic
deterioration of PON1 has left these species
without a mechanism to break down specific
neurotoxic compounds.
Given the sensitivity of Pon1−/− mice to

organophosphate exposure (28), the inability
of most marine mammal plasma to detoxify
organophosphates suggests the potential for
neurotoxicity if sufficient levels of these com-
pounds accumulate in these animals’ habitats
or food sources. In Florida, agricultural use
of organophosphate pesticides is common,
and runoff can drain into manatee habitats.
In Brevard County, where an estimated 70%
of Atlantic coast manateesmigrate or seasonally
reside (29, 30), agricultural lands frequently
abut manatee protection zones and waterways
(Fig. 3). Limited sampling upstream of Manatee
Bay has measured levels of chlorpyrifos as

high as 0.023 mg/liter (31), and levels could be
much higher directly after pesticide applica-
tions (32). Dugongs may be at risk of exposure
to organophosphorus pesticides that are used
in the sugarcane industry along the Queensland
coast of Australia and have been detected at 5
to 270 pg/liter in coastal river systems (33).
Carnivorous marine mammals may also ingest
these compounds through their diets of inver-
tebrates and fish, which have shown evidence
of bioaccumulation of organophosphates in
Arctic populations (34). In order to improve
our understanding of the extent of exposure
and attendant risk marine mammals face, we
recommend increased monitoring of marine
mammal habitats, as well as the testing of
tissues from deceased animals for biomarkers
of organophosphate exposure.
The presence of these potential risks to many

marine mammals due to their loss of PON1
function provides a clear example of the trade-
offs possible in evolution: although PON1 func-
tional loss was not deleterious and may even
have been beneficial in ancestral marine envi-
ronments, it may carry detrimental fitness con-
sequences in modern environments.
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Fig. 3. The manatee and the adjacency of its habitat to agricultural land use. (Left) Florida manatee. (Center) Manatee protection zones and
agricultural land in Florida. (Right) Manatee protection zones, waterways, and agricultural land in Brevard County.

RESEARCH | REPORT
P
H
O
T
O

(L
E
FT

):
R
.
K
.
B
O
N
D
E
(2

0
0
6
)

on O
ctober 15, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://genome.ucsc.edu/
http://science.sciencemag.org/


28. D. M. Shih et al., Nature 394, 284–287 (1998).
29. C. J. Deutsch et al., Wildl. Monogr. 151, 1–77 (2003).
30. J. Martin et al., Biol. Conserv. 186, 44–51 (2015).
31. J. F. Carriger, G. M. Rand, Ecotoxicology 17, 660–679 (2008).
32. J. R. Aguirre-Rubí et al., Environ. Sci. Pollut. Res. Int. 25,

13396–13415 (2018).
33. M. Shaw et al., Mar. Pollut. Bull. 60, 113–122 (2010).
34. A. D. Morris et al., Environ. Toxicol. Chem. 35, 1695–1707

(2016).
35. C. E. Furlong et al., Neurotoxicology 21, 91–100 (2000).

ACKNOWLEDGMENTS

We thank B. Small for assistance with molecular work;
K. Goulet and V. Fravel for supplying marine mammal samples;
S. Lakdawala and the Lakdawala lab for supplying ferret
samples; and A. Lusis, D. Shih, and A. Tward for supplying Pon1
knockout mice; as well as all members of the Clark and
Chikina labs and K. Dolan for feedback. Any use of trade, firm,

or product names is for descriptive purposes only and does
not imply endorsement by the U.S. government. Funding: This
study was funded by NIH grants R01HG009299 and U54
HG008540 to N.L.C. and M.C. A.K. was supported by NIH T32
training grant T32 EB009403 as part of the HHMI-NIBIB
Interfaces Initiative. C.E.F., J.M., and R.R. were supported
by funds from the Biotechnology Research Gift Fund,
University of Washington, Division of Medical Genetics. J.M.
was supported by grant 16SDG30300009 from the American
Heart Association. Dugong samples were collected with
funds from the Winifred Violet Scott Foundation and the Sea
World Research and Rescue Foundation. The collection of
manatee samples was funded by the U.S. Geological Survey.
Author contributions: N.L.C., M.C., C.E.F., and W.K.M. designed
the study. R.K.B., D.E.C., J.G., J.M.L., and C.E.F. provided
samples and reagents. J.J., J.M., and R.R. performed laboratory
experiments. W.K.M., J.J., R.P., A.K., C.K., and N.L.C.
performed analyses. W.K.M., S.E.W., R.P., A.K., and N.L.C.

generated figures. W.K.M., C.E.F., and N.L.C. wrote the paper.
Competing interests: The authors declare no competing
interests. Data and materials availability: The data reported in
this paper are tabulated in the supplementary materials.
Resequencing data for the PON1 coding sequence
in dugongs is available in GenBank (accession number
MF197755). Scripts used in analyses are available at
https://github.com/nclark-lab/MarineFxLoss.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/361/6402/591/suppl/DC1
Materials and Methods
Figs. S1 to S6
Tables S1 to S13
References (36–105)

25 August 2017; accepted 29 June 2018
10.1126/science.aap7714

Meyer et al., Science 361, 591–594 (2018) 10 August 2018 4 of 4

RESEARCH | REPORT
on O

ctober 15, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

https://github.com/nclark-lab/MarineFxLoss
http://www.sciencemag.org/content/361/6402/591/suppl/DC1
http://science.sciencemag.org/


mammals
 yield potential risks for modern marineParaoxonase 1Ancient convergent losses of 

Furlong and Nathan L. Clark
Kronk, Maria Chikina, Robert K. Bonde, Daniel E. Crocker, Joseph Gaspard, Janet M. Lanyon, Judit Marsillach, Clement E. 
Wynn K. Meyer, Jerrica Jamison, Rebecca Richter, Stacy E. Woods, Raghavendran Partha, Amanda Kowalczyk, Charles

DOI: 10.1126/science.aap7714
 (6402), 591-594.361Science 

, this issue p. 591Science
run-off of this agricultural product into the marine environment continues.
defense against organophosphorus toxicity. Marine mammals may be at a great disadvantage in the Anthropocene if 

 is the primary mammalianParaoxonase 1of this loss of function across taxa indicate an evolutionary benefit. However, 
marine mammals, likely resulting from remodeling of lipid metabolism or antioxidant networks. The multiple occurrences 

 gene are evident inParaoxonase 1mammal species to identify regions of convergent change. Multiple losses of the 
 surveyed the genomes of several marineet al.the particular selective pressures that this environment imposes. Meyer 

Mammals evolved in terrestrial environments. Those that now live in the marine environment have had to adapt to
Adaptive conflicts with the modern world

ARTICLE TOOLS http://science.sciencemag.org/content/361/6402/591

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/08/08/361.6402.591.DC1

CONTENT
RELATED http://science.sciencemag.org/content/sci/361/6408/1208.1.full

REFERENCES

http://science.sciencemag.org/content/361/6402/591#BIBL
This article cites 88 articles, 9 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Copyright © 2018, American Association for the Advancement of Science

on O
ctober 15, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/361/6402/591
http://science.sciencemag.org/content/suppl/2018/08/08/361.6402.591.DC1
http://science.sciencemag.org/content/sci/361/6408/1208.1.full
http://science.sciencemag.org/content/361/6402/591#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

