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Foraging hummingbirds and nectar bats oxidize both glucose and fructose

from nectar at exceptionally high rates. Rapid sugar flux is made possible by

adaptations to digestive, cardiovascular, and metabolic physiology affecting

shared and distinct pathways for the processing of each sugar. Still, how these

animals partition and regulate the metabolism of each sugar and whether this

occurs differently between hummingbirds and bats remain unclear.
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Introduction

The task of achieving energy homeostasis is an
especially challenging one for vertebrate pollina-
tors like hummingbirds and small bats. Flight re-
quires the highest rates of metabolic power input
of any form of locomotion, and these smallest fliers
employ the most energetically intensive form of
flight: hovering (78, 97, 102). Small body size
(�2–20 g for hummingbirds; �10 –30 g for nectar
bats) and endothermy mean that these animals
must often sustain high rates of metabolism even
during inactive periods, especially when ambient
temperatures fall below an animal’s thermoneutral
zone. Even more impressive, several hummingbird
and bat species are long-distance migrators, capa-
ble of sustaining energetically expensive migratory
flight for extended periods, exclusively fueled by
onboard fat stores (22, 59).

The nectars (and, for bats, fruits) that humming-
birds and nectar bats rely on for most of their
caloric intake present a readily digestible, energy-
rich resource (58). During foraging periods, these
animals visit flowers (or consume fruits) at regular
intervals, ensuring continuous ingestion of sugars.
It seems obvious, even to the casual observer of a
backyard hummingbird feeder, that these animals
“run on nectar sugar.” However, among well-stud-
ied mammalian species, constraints to dietary
sugar ingestion, absorption, and oxidation limit
extensive reliance on ingested sugar as a fuel for
ongoing exercise (30, 31). Thus, even if the ability
of hummingbirds and bats to rely extensively on
ingested sugar as a fuel is intuitively satisfying, it
is a remarkable metabolic feat indicative of a
remarkable underlying physiology. Still, given
that carbohydrate energy stores (e.g., circulating
blood sugars, hepatic or intramuscular glycogen)
are energy sparse, they are not an ideal fuel store
for fasting fliers. Hence, these animals must pos-
sess the ability to convert ingested sugars to a
more energy-dense storage form (fat) and amass
these energy stores at rates sufficient to build large

reserves capable of seeing them through fasting
periods, even when energy turnover might remain
relatively high.

In the following review, we examine the chal-
lenges hummingbirds and nectar bats face in using
nectar sugars to both fuel immediate energy de-
mands as well as amass energy reserves for use
during non-foraging periods. We characterize
physiological strategies that these animals rely on
to ensure rapid uptake and oxidation, or storage of
dietary carbon, with an emphasis on the possible
distinct handling of each principal nectar sugar:
glucose and fructose. Last, we identify important
gaps in our understanding of the physiological
mechanisms that regulate sugar use as an oxidative
or lipogenic fuel and highlight differences in avian
and chiropteran physiology that imply distinct
strategies used by each group to achieve the same
fuel use phenotype.

Aerial Refueling: Nectar Sugar
Fuels Foraging Activity

Patterns of fuel use during exercise are highly con-
served among non-flying mammals (52), with low-
intensity exercise supported primarily by lipid
oxidation with a shift toward primary reliance on
oxidation of intramuscular glycogen at high inten-
sities (10, 52, 92). Proportionate reliance on re-
cently ingested or circulating blood sugar peaks at
relatively low exercise intensities (27, 32, 70, 90)
and accounts for, at most, 35% of overall metabolic
fuel use (29, 92). Although birds do rely to a vari-
able extent on endogenous carbohydrates as a fuel
for flight when not fasted (23), long flights, or
flights by fasted birds, are fueled by oxidation of
onboard lipid stores (11, 22, 91). Thus, although
hummingbirds and nectar bats have a sugar-rich
diet, a priori expectations of high rates of dietary
sugar oxidation during foraging are without prece-
dence among other vertebrates studied.

To investigate fuel use in hummingbirds, Suarez
and colleagues (82) monitored respiratory exchange
ratios (RER � V̇CO2/V̇O2; rates of CO2 consumption/
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O2 consumption) and deduced that hummingbirds
initially oxidized lipids during the first hover-feeding
following a fast (i.e., that the RER �0.7). The team
then observed a rapid increase in RER values with
each subsequent feeding event, with RER �1.0 af-
ter only several minutes, indicative of a switch to
carbohydrate oxidation (82). Following from this
work, Welch, Suarez, and collaborators, published
a series of papers combining feeder mask respi-
rometry with a diet-switching carbon stable isoto-
pic tracer approach (technique reviewed in Refs.
53, 100) to show that this change in RER was com-
mensurate with a switch from oxidation of endog-
enous (lipid) carbon stores to newly ingested
nectar sugar (80, 95, 98). Not only was this switch
in fuel use comparatively rapid, but hummingbirds
appeared able to fuel up to 100% of energetically
expensive hovering flight with either glucose or
fructose ingested only minutes prior, achieving
much greater proportionate (FIGURE 1A) and ab-
solute (FIGURE 1B; Table 1) rates of dietary or
circulating sugar flux during exercise than that
seen in humans (32), rodents (20, 63), or other
cursorial mammals (92). Subsequently, approxi-
mately simultaneous work utilizing similar ap-
proaches two teams showed that nectar bats,
existing on a similarly specialized sugar-rich diet,
exhibited qualitatively identical patterns of fuel use
during foraging (Refs. 89, 97; FIGURE 1A).

This work revealed two important facts: unlike in
most mammals, fuel use in vertebrate nectarivores
is determined by dietary status and not by exercise
intensity; unlike in any other vertebrate group exam-
ined, apparent rates of uptake and oxidation of fruc-
tose were equal to that for glucose (FIGURE 1). This
second finding is especially intriguing, since it both
implies a metabolic flexibility that other animals
do not possess and raises interesting questions
regarding whether and how nectarivores might
regulate and partition the metabolism of each
sugar species.

Bottlenecks to the flux of glucose from diet to
exercising muscles exist at multiple steps, includ-
ing the hydrolysis of sugar polymers in the intes-
tine, hexose absorption across the intestinal brush
border, and uptake and phosphorylation by end-
use tissues (reviewed in Refs. 32, 70, 90). Previous
studies identified multiple adaptations, common
to most flying vertebrates, that permit exception-
ally high rates of oxygen flux from the environment
to their muscle mitochondria (27, 48, 78). Work on
hummingbirds and nectar bats now suggested there
were homologous adaptations to digestive, cardio-
vascular, and metabolic physiology that enable the
highest rates of carbon (sugar) flux from the environ-
ment (nectar or fruit pulp) to the same muscle mi-
tochondria (80, 84). Although it is a more nascent
field of research than that seeking to understand

variation in the “oxygen transport cascade” (93)
underlying variation in aerobic exercise capacity,
recent progress in our understanding of variation
in the analogous “sugar oxidation cascade” (80)
has been made. This is summarized below.

Rapid Sugar Digestion and
Absorption

Once ingested and passed to the intestine, the
initial key regulatory step in the “sugar oxidation
cascade” involves hydrolysis of complex carbohy-
drates and disaccharides to their component mon-
osaccharides, followed by their uptake across the
intestinal brush border. Sucrase hydrolyzes su-
crose yielding fructose and glucose, and its expres-
sion correlates with each group’s typical diet.
Proportions of sucrose, glucose, and fructose in nec-
tars vary interspecifically (3, 69), with hummingbirds
tending to consume nectar high in sucrose (�50%;
Ref. 5), whereas nectar bats typically consume nec-
tars and fruits lower in sucrose (�50%) and higher
in glucose and fructose (4). Hummingbirds have
one of the highest sucrase activities measured in
any vertebrate, in contrast with lower activities
seen in passerines (49, 71). Nectar bats have com-
paratively lower sucrase activity than humming-
birds but similar activity to levels in fruit bats,
likely reflecting the lower proportion of sucrose in
the bat diet (25, 26). Despite having lower sucrase
activity than hummingbirds, sucrase does not ap-
pear to limit the digestive efficiency of nectar bats
consuming 1 M sucrose diets (2).

Similar to other aerial vertebrates, humming-
birds and nectar bats have shorter guts, with re-
duced surface area compared with similar-sized
terrestrial mammals (15). Thus flying nectarivores
must paradoxically meet comparatively higher en-
ergy demands despite more rapid gut transit times,
less absorptive area, and higher dietary intake (65).
Cellular-mediated absorption of glucose and fruc-
tose across the intestinal brush border in hum-
mingbirds and bats occurs via sodium-glucose
cotransporter 1 (SGLT1) and glucose transporter 5
(GLUT5), respectively (87, 104). The intestinal sur-
face area-specific rates of uptake in hummingbirds
are among the highest known (37), whereas the
rates in bats are unremarkable compared with sim-
ilarly sized terrestrial mammals (36).

Nevertheless, capacities for cellular-mediated
sugar uptake in hummingbirds and nectar bats
may be insufficient to account for the observed
sugar assimilation efficiencies of �95% (37, 38),
particularly when ingestion rates are high. Like
other flying vertebrates, hummingbirds and nectar
bats also employ paracellular absorption of nutri-
ents: the passive absorption of small nutrients
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FIGURE 1. Vertebrate nectarivores oxidize newly ingested sugars at comparatively high
rates
Specifically, hummingbirds and nectar bats oxidize ingested nectar sugars to support a higher propor-
tion of exercise metabolism (A), and at greater mass-specific rates than in humans and other verte-
brates (B). A: fexo, the proportion of exhaled CO2 resulting from oxidation of isotopically labeled,
newly ingested (exogenous) sugars during foraging or exercise. B: calculated body mass (Mb)-specific
rates of newly ingested (exogenous) sugar oxidation (�mol·g–1·min–1), during foraging or exercise.
Data are shown for three species of hummingbird (ruby-throated, Archilochus colubris; Anna’s, Ca-
lypte anna; and rufous hummingbird, Selasphorus rufus), one species of nectar bat (Pallas’ long-
tongued nectar bat, Glossophaga soricina) and humans (Homo sapiens). Hummingbirds and bats
performed hover-feeding bouts at will, interspersed by periods of perching, and humans exercised on
a cycle ergometer at 50% of maximal aerobic rate. Rates of exogenous sugar oxidation in humming-
birds were calculated based on time/energy budgets, and rates of oxidation were generally positively
related with foraging effort (% of time spent flying/hover-feeding, as indicated). Because time budgets
were not recorded in bats, these data are not available. Data are plotted in relation to time since the
start of the foraging or exercise period. Hummingbirds, bats, and humans were fasted before the start
of the experiment. Data redrawn from Refs. 16 (A. colubris), 98 (C. anna and S. rufus), and 29 (H. sapi-
ens). For additional methodological details, please consult the cited work.
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across comparatively leaky tight junctions binding
adjacent enterocytes (reviewed in Ref. 66). This
provides a rapid and low-cost means of absorbing
molecules and accounts for the majority of hexose
absorption in small aerial vertebrates (42), includ-
ing hummingbirds (55) and nectar bats (68). The
proportion of active and passive absorption in
vivo is difficult to determine in hummingbirds
due to their small size. However, paracellular
absorption provides flexibility, and the propor-
tion of paracellular absorption increases with
nectar concentration (55). In the case of nectar
bats, paracellular sugar absorption is not only
sufficient but required to fuel hovering flight
with recently ingested sugars (68).

Circulatory Delivery of Sugars

Because they are both transported via the circula-
tory system, many of the adaptations in the “oxy-
gen transport cascade” that enhance oxygen
delivery simultaneously enhance the delivery of
glucose, and potentially fructose (80). Rates of ox-
ygen and sugar delivery to tissues are a function of
cardiac output and blood oxygen or sugar levels,
and are enhanced by higher capillary volume den-
sities, which reduce diffusion or transport dis-
tances. Hummingbird heart rates during flight
range between 480 and 1,200 beats/min (BPM) (18,
41), and their cardiac output is approximately five
times their body weight per minute (33). Hemato-
crit, an indirect measure of oxygen-carrying capac-
ity, is also high, at 56.3% (34). Bats generally also
exhibit enhanced cardiac output and oxygen-car-
rying capacities. Frugivorous tent-making bat
(Uroderma bibobatum) heart rates have been re-
corded reaching upward 900 BPM during flight
(60). Egyptian fruit bats (Rousettus aegypticus) ex-
hibit hematocrit values as high as 55%, greater
than in similarly sized non-flying mammals such

as shrews (39–50%; Refs. 35, 73). Both hummingbirds
(6) and nectar bats (25 mM; Ref. 39) exhibit excep-
tionally high postprandial blood glucose levels
compared with similarly sized terrestrial mam-
mals. Electron micrograph analysis of humming-
bird flight muscle reveals a two to six times higher
capillary volume density compared with mammals
(50), and although unreported in nectar bats, cap-
illary volume density is high in insectivorous bats
(51). Collectively, it is clear that glucose delivery to
tissues is highly enhanced in these aerial nectari-
vores. Frustratingly, blood fructose levels are unre-
ported in any of these groups. Thus similar
conclusions about fructose delivery capacity re-
main elusive.

Oxygen and the carbon in dietary sugars con-
verge in the mitochondria of aerobically active tis-
sues. Thus the mitochondria, as end consumers of
both oxygen and sugar carbon, play a key role in
establishing the overall flux of each. Unsurpris-
ingly, both nectar bats and hummingbirds exhibit
exceptionally high activities of mitochondrial en-
zymes such as citrate synthase (83). Both structural
and enzymatic properties of hummingbird mito-
chondria contribute to the increased rate of sub-
strate utilization observed (50). Hummingbird
mitochondria occur at densities near theoretical
physiological maximums, comprising 35% of over-
all muscle fiber volume (81). Although not yet di-
rectly demonstrated in nectar bats, high
mitochondrial abundance is unsurprisingly the
case in bats in general (51), since they all employ
energetically expensive flight to forage.

Rapid Sugar Transport Into Tissues

As in cellular-mediated sugar uptake in intestinal
brush-border cells, sugar transport across other cell
membranes requires facilitated transport through
glucose transporters (GLUTs). In mammalian

Table 1. Trial hexose oxidation rates

S. rufus C. anna A. colubris G. sorcina H. sapiens

Sucrose Sucrose Sucrose Glucose Fructose Sucrose Glucose Glucose � sucrose
(n � 4) (n � 3) (n � 5) (n � 6) (n � 6) (n � 7) (n � 9) (n � 9)

Body mass, g 3.71 � 0.12 4.98 � 0.48 2.90 � 0.13 2.99 � 0.15 2.93 � 0.11 10.2 � 0.1 74,100 � 1,900 74,100 � 1,900
Trial hexose oxidation rate,
�mol hexose g	1 min	1 0.50 � 0.05 0.52 � 0.15 2.84 � 0.17 1.49 � 0.15 1.66 � 0.16 0.078 � 0.004 0.089 � 0.004
Time spent hovering, % 6.6 � 3.4 9.6 � 7.4 31 � 3 21 � 4 15 � 3
Hovering hexose oxidation
rate, �mol hexose g	1 min	1 3.29 � 0.26 3.05 � 0.46 6.40 � 0.52 4.63 � 0.40 4.46 � 0.24 2.04 � 0.11
t50, min 6.7 � 0.9 12.2 � 0.4 16.9 � 1.4 13.3 � 2.2 12.4 � 1.7 9.9 � 1.9 29 27
Refs. data is based on 98 98 16 16 16 97 29 29

Values are means�SE. Hovering nectarivores have higher mass-specific rates of exogenous hexose oxidation compared with humans. Trial
hexose oxidation rates for rufous (S. rufus), Anna’s (C. anna), and ruby-throated (A. colubris) hummingbirds incorporate time-energy
budgets (% hover feeding vs. perching), and continuous cycling at 50% maximal aerobic rate in humans (H. sapiens). Exogenous hexose
oxidation rates increase to meet energy demands during a hovering bout. Time-energy budgets are not available for Pallas’ long-tongued
nectar bat (G. soricina), and only hovering rates are reported. t50, time at which 50% of carbon isotopes are exchanged in animals breath,
and is calculated from kinetics of “disappearance” of labeled carbon (kd, sensu 99) in hummingbirds, and “appearance” (ki values) in
humans.
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muscle, several GLUT isoforms, including GLUT1
and GLUT3, are expressed at low levels, supporting
low capacities for glucose uptake (21). GLUT4, ex-
pressed at relatively higher levels, is important to
overall glucose uptake capacity in muscle and
to overall blood glucose regulation. In response to
elevated blood glucose, peripheral tissues, includ-
ing the muscle of most vertebrates, translocate
GLUT4 from intracellular vesicles to the sarco-
lemma, transiently increasing the uptake capacity
for glucose (61, 75). Indeed, this response is a
highly conserved feature of the insulin-mediated
blood glucose regulatory program. This mechanism
is enhanced in nectar bat flight muscle by compara-
tively high densities of GLUT4 (FIGURE 2C; Ref. 84),
suggesting a relatively high capacity for glucose
uptake. Exercise, which independently stimulates
GLUT4 translocation (61), is thought to be an im-
portant regulator of blood glucose in nectar bats
(39). This conclusion was inferred by noting that

the rapidity with which high (�25 mM) postpran-
dial blood glucose levels returned to prefeeding
levels was positively correlated to the level of flight
activity (39).

Unlike all other vertebrate taxa, birds do not
possess a GLUT4 gene (FIGURE 2C; Refs. 9, 14, 64,
74, 86, 103). Consequently, blood glucose concen-
trations of birds are unresponsive to physiologi-
cally relevant concentrations of insulin (9). Given
GLUT4’s importance in enabling glucose uptake
capacity in the muscles of all other vertebrates, its
absence in hummingbird flight muscle is striking.
What transporter(s) imbue hummingbird flight
muscle with high apparent capacities for glucose
uptake? In contrast with most vertebrates, hum-
mingbird flight muscle expresses relatively high
abundance of GLUT1 transcript, suggesting sub-
stantial GLUT1-mediated glucose uptake capacity
(FIGURE 2A; Ref. 57). GLUT3 transcript has been
observed in hummingbird muscle, although its

FIGURE 2. Glucose transporter expression patterns in vertebrate nectarivores
Elevated expression of glucose transporters may underlie exceptional rates of sugar flux into splanchnic
tissue and flight muscle in hummingbirds, and implies differences between hummingbirds and nectar bats
with respect to how sugar flux is maintained and regulated. Relative transcript abundance of glucose
transporter GLUT1 (A) and fructose transporter GLUT5 (B) among tissues of the ruby-throated humming-
birds (A. colubris). Expression is based on qPCR data normalized to Elf1
1, and redrawn from Ref. 57
with permission. Different letters indicate tissues with significantly different levels of expression based on
Tukey multiple comparisons. C: Western blots showing absence of GLUT4 expression in ruby-throated
hummingbird flight muscle (pectoralis, P), heart (H), liver (L), brain (B), intestine (I), and kidney (K) tissue
(LDR, ladder; M, mouse heart positive control; reprinted from Ref. 94 with permission), and relatively high
expression in nectar bat (G. soricina; reprinted from 84 with permission) flight muscle.
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contribution to glucose uptake capacity remains
unknown because neither transcript nor protein
abundance has been quantified (94). Similarly,
GLUT1 and GLUT3 abundance has not been as-
sessed in nectarivorous bats.

In most vertebrates, skeletal muscle has very
little fructose uptake capacity because fructose-
specific isoforms (e.g., GLUT5) are expressed at
low levels (21, 28), and isoforms that transport both
glucose and fructose (e.g., GLUT2) are absent (87).
Hummingbird flight muscles have relatively high
transcript abundance of GLUT5, exceeding that of
kidney and comparable even to transcript abun-
dance in intestine (FIGURE 2B), both tissues with
much higher relative GLUT5 abundance than other
tissues in all mammals examined (1, 5, 66, 105). If
transcript abundance is indicative of protein abun-
dance for this gene, then capacity for uptake of
fructose into flight muscle may be very rapid com-
pared with other vertebrate muscles. Whether an
analogous adaptation exists in nectar bats remains
to be elucidated. Thus, although new evidence pro-
vides tantalizing clues, much work needs to be
done to understand the molecular basis of appar-
ent high-glucose and fructose-uptake capacities in
vertebrate nectarivore flight muscle.

Rapid Sugar Oxidation in Tissues

Following uptake into muscle or other tissues, both
glucose and fructose must be phosphorylated to
direct them to a further catabolic or anabolic fate,
to trap the sugar in the cell, and to maintain a
concentration gradient for GLUT-mediated uptake
(101). Capacities for rapid phosphorylation of glu-
cose by hexokinase, as estimated by apparent Vmax,
are four to eight times as rapid as that observed in
mouse soleus muscle (8, 82, 83) and exceed calcu-
lated rates of glucose flux through glycolysis in vivo
(83). This is a key difference compared with “aer-
obic” terrestrial vertebrates, who are unable to sus-
tain high glycolytic flux using circulating glucose
and are dependent on intramuscular glycogen (92).

The apparent ability of hummingbirds to sustain
foraging when offered a fructose solution (16) im-
plies that fructose must not only be taken up but
must also be phosphorylated by flight muscle at
high rates. Although glucose is readily phosphory-
lated by hexokinase in model mammalian species
(101), known hexokinases have comparatively low
affinity for fructose (12), and most fructose is taken
up by the liver and kidneys, where it is phosphor-
ylated by ketohexokinase, the first enzyme of the
fructolysis pathway (85). As in other vertebrates
(17), key regulatory fructolytic enzymes keto-
hexokinase and aldolase B are transcribed at only
low levels in hummingbird muscle (57), paradoxi-
cally implying low fructolytic capacity through this

pathway. However, although apparent capacities
for phosphorylation of fructose by flight muscle
hexokinase are not as rapid as they are for glucose,
they are still over three times more rapid than rates
observed with glucose in mouse soleus muscle (8,
57). Although Vmax values for hexokinase-mediated
phosphorylation of fructose are lower than calcu-
lated rates of apparent fructolysis and oxidation in
hummingbird flight muscle during hovering (96),
they do exceed rates of apparent fructolysis when
these are averaged over the entire foraging period
(bouts of foraging flight separated by periods of
perching; Ref. 57). Thus it seems plausible that
direct fructose phosphorylation in hummingbird
flight muscle, temporally buffered, for example, by
the oxidation of hepatically generated fructolytic
metabolites (e.g., lactate, pyruvate, or glucose),
could support ongoing foraging activity. Capacities
for fructose phosphorylation (i.e., fructolytic en-
zyme activities or apparent hexokinase-mediated
phosphorylation in muscle) in nectar bat flight
muscle remain unknown. Available evidence sug-
gests that nectar bats, like hummingbirds, can ox-
idize fructose at high rates to support foraging,
although much work remains to be done to clarify
the role of fructose as an oxidative fuel in this
group.

Oxidation vs. Lipogenesis: Distinct
Fates for Component Nectar
Sugars?

Circulating sugars are, like the flowers from which
these nectarivores obtain their food, ephemeral in
nature. In both hummingbirds and bats, isotopic
tracer studies indicate that the turnover of ingested
sugar molecules in the pool of actively metaboliz-
able substrates is rapid. The time necessary for a
50% turnover of ingested sugar molecules within
the metabolizable pool (13) is �15 min in hum-
mingbirds and nectar bats, whereas in humans it is
roughly 30 min (88).

As noted above, fasted hummingbirds and nec-
tar bats fuel energetically expensive flight by oxi-
dizing onboard lipid stores (16, 97, 98). Since lipids
do not generally comprise a substantial portion of
ingested calories in the hummingbird diet, endog-
enous lipid reserves must be synthesized de novo
from ingested sugars. Because energy demands
during fasting periods may be quite high (such as
during migratory flights or overnight periods at low
ambient temperature), these animals must possess
the ability to rapidly build expansive energy stores
via de novo lipogenesis (DNL).

The importance of dietary sugars in promoting
DNL, obesity, and metabolic disorders such as
diabetes in humans is hotly debated (46, 47, 67,
76). Although evidence from studies in rodents
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chronically fed a high-carbohydrate diet indicate
that DNL from sugar precursors accounts for 60 –
70% of circulating fatty acids (56), evidence in hu-
man studies is more equivocal. Recent reports
indicate DNL accounts for between �5% (62) to
�12% (72) of circulating triglycerides in human
subjects fed a high-carbohydrate, low-fat diet.

Due in part to its preferential uptake and metab-
olism by splanchnic tissues like the liver, fructose
is hypothesized to stimulate hepatic DNL to a
greater extent than glucose (43). Fructose has been
shown to raise triglyceride levels in humans, but
this effect is only consistently observed in healthy
adults when fructose intake is exceptionally high
(�95th percentile intake rates compared with av-
erage U.S. intake rates) and is coupled with ele-
vated total caloric intake rates (45). Sievenpiper et
al. (76) suggest that the inclusion of supraphysi-
ological doses of fructose typically included in
“high-carbohydrate” diets fed to rodents may
partly explain the apparent greater effect of these
diets on DNL in rodent systems. Unlike for most
vertebrates, fructose is abundant in the nectarivore
diet, raising interesting possibilities regarding the
extent to which hummingbirds and nectar bats
utilize glucose vs. fructose for DNL.

The liver is considered the primary lipogenic
tissue in birds (7, 24), and hummingbird livers are
hypothesized to possess the greatest biosynthetic
capacity of any vertebrate hepatic tissue (79). This
hypothesis derives from the exceptional activity of
both enzymes crucial to gluconeogenesis (e.g., py-
ruvate carboxylase) and fatty-acid synthesis (e.g.,
acetyl-CoA carboxylase; Ref. 79). Given that the
hummingbird liver abundantly expresses fructo-
lytic enzymes (e.g., ketohexokinase and aldolase
B), it is likely that this tissue is adept at metaboliz-
ing fructose (57). Following from the observation
that the liver is a principal site of fructose metab-
olism in humans and rodents (85), it is possible
that fructose is preferentially metabolized in the
hummingbird liver, sparing glucose for direct oxi-
dation by active tissues such as heart and flight
muscle, as well as glucose-dependent tissues like
brain. This hepatic metabolism of fructose in hum-
mingbirds may convey substantial metabolic flex-
ibility, allowing the rationalization of observed
patterns of fuel use (16, 80, 98). A theoretical met-
abolic framework illustrating possible partitioning
and highlighting pathways for rapid uptake and
metabolism of both glucose and fructose are
shown in FIGURE 3. For example, when fructose is
ingested by itself (e.g., Refs. 16, 89), some circulat-
ing fructose may be directly oxidized in flight mus-
cle and heart, whereas some may be used for
hepatic DNL and gluconeogenesis, with the liver
becoming a net glucose, lactate, and/or pyruvate
exporting organ (16). In contrast, when glucose

and fructose are ingested together (as sucrose or
mixed monosaccharides), glucose may preferen-
tially be directly oxidized in active tissues (muscle,
heart, brain), with fructose preferentially directed
toward DNL and, to a lesser extent, the production
and export of glucose, lactate, and pyruvate.

Comparatively less is known about the extent to
which nectar bats build fat stores via DNL or do so
in the liver vs. adipose tissue (54). The biosynthetic
capacity of nectar bat liver is yet to be character-
ized but likely exhibits similar enzymatic adapta-
tions to those characterized in hummingbirds (79).
Furthermore, nectar bats may dramatically in-
crease insect intake during some seasons, obtain-
ing substantial lipids from their diet. Thus much
work remains to be done to understand differences
in lipid storage and usage between avian and chi-
ropteran lineages (54).

Still other metabolic fates are possible for each
sugar. For example, the contribution of the pen-
tose phosphate pathway (PPP) as a potential route
for glucose or fructose catabolism is unclear. The
first step of the PPP is glucose-6-phosphate dehy-
drogenase, cleaving the first carbon of the glucose
molecule. This produces NADPH and CO2 and a
ribose sugar that can enter glycolysis or be used in
nucleotide and amino acid synthesis (77). The CO2

released can lead to a RER of �1 and could repre-
sent production of NADPH to support DNL (19).
Recently, an alternative explanation for the in-
crease in RER and use of NADPH has been pro-
posed in nectarivores using a hawkmoth model
(Manduca sexta; Ref. 44). Levin et al. (44) proposed
that, between flight bouts, glucose (or possibly
fructose) is shunted through the PPP and that the
NADPH produced is used in the regeneration of
the antioxidant glutathione. The remaining ribose
sugar is then oxidized during flight. High antioxi-
dant capacity may be critical for hovering animals
because associated high metabolic rates may in-
crease reactive oxygen species generation. Rapid
diversion of hexose from glycolysis to the PPP can
occur with acute oxidative stress and can be a
key step in maintaining redox balance (40).
Whether hummingbirds and other nectarivores
partition either glucose or fructose through the
PPP to maintain the glutathione pool and man-
age oxidative stress is unknown but interesting
given the high metabolic rates and low dietary
antioxidants increasing the demand on endoge-
nous antioxidants.

Conclusions and Future Directions

Studies tracking fuel use in hovering humming-
birds and nectar bats unequivocally demonstrate
an exceptional capacity for and flexibility in reli-
ance on either endogenous lipid or on the glucose
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or fructose components of their nectar diets (16,
80). Studies intended to understand the mechanis-
tic basis of high aerobic capacity in these groups
have revealed adaptations that simultaneously en-
hance both oxygen and sugar flux from the envi-
ronment to active flight muscles (80, 84). Yet,
although tantalizing clues now exist regarding how
sugar uptake across tissue borders is enhanced in
these groups (e.g., GLUT mRNA expression pat-
terns), many questions remain. For example, al-
though exceptional GLUT4 protein levels may be
present in nectar bat flight muscle, potentially un-
derlying high capacities for glucose uptake (84),
the basis for high fructose uptake capacity in flight
muscle is unclear in nectar bats and far from
proven in hummingbirds.

In switching almost completely between lipid
and sugar oxidation, hummingbirds and nectar

bats must acutely regulate fuel use at a tissue and
systemic level. The lack of GLUT4 (and an associ-
ated insulin-mediated response) in hummingbirds
means that some aspects of glucose use must differ
between each group. Indeed, although both nectar
bats and hummingbirds experience relatively high
postprandial peaks in blood glucose, fasting val-
ues differ significantly. Nectar bats regulate fast-
ing blood glucose levels at ~5 mM, similar to
terrestrial mammals, including humans (39). Hum-
mingbirds, in contrast, exhibit much higher fasted
blood glucose levels (~17 mM; Ref. 7), like other
birds generally, although to an extreme (9). Just as
important, almost nothing is known about how
fructose metabolism, either directly in flight mus-
cle or via splanchnic tissue, is controlled in either
group. We call for work to be done to understand
how metabolism of each sugar type is controlled

FIGURE 3. A schematic depicting key aspects of known or hypothesized pathways for nectar sugar
absorption and processing in hummingbirds
This figure highlights probable or suspected flux of glucose and fructose when an animal is foraging and ingesting
both sugars (as monosaccharides and as sucrose). Aspects of nectar sugar digestion (left), circulatory transport, he-
patic processing (right), and uptake and oxidation in flight muscle tissue (bottom) are shown. Known or hypothe-
sized routes of glucose and fructose (or their metabolites) transmembrane passage (e.g., through glucose
transporters, GLUTs), based on a priori expectations arising from known highly conserved mechanisms from model
organisms (e.g., humans or rodents) combined with emerging insights from research on hummingbirds, are specifi-
cally highlighted. Details of lactate/pyruvate and fat transmembrane passage are omitted for clarity. Known or hy-
pothesized relative rates of flux of glucose, fructose, and metabolites are indicated by the thickness of arrows.
Compared with hummingbirds, nectar bats would principally rely on GLUT4-mediated uptake of glucose into mus-
cle cells. Additional known or hypothesized species-specific differences in transport and metabolic pathways are
discussed in the text.
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and partitioned when both sugars are ingested, as
is always the case for wildly foraging individuals. �
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