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REVIEW ARTICLE
Unravelling the mechanisms regulating muscle mitochondrial biogenesis
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Skeletal muscle is a tissue with a low mitochondrial contentthis can invariably be overcome with exercise, signifying that
under basal conditions, but it is responsive to acute increasesxercise activates a multitude of pathways which can respond
in contractile activity patterns (i.e. exercise) which initiate theto restore mitochondrial health. This knowledge, along with
signalling of a compensatory response, leading to the biogenesggowing realization that pharmacological agents can also promote
of mitochondria and improved organelle function. Exercise alsanitochondrial health independently of exercise, leads to an
promotes the degradation of poorly functioning mitochondriaoptimistic outlook in which the maintenance of mitochondrial
(i.e. mitophagy), thereby accelerating mitochondrial turnoverand whole-body metabolic health can be achieved by taking
and preserving a pool of healthy organelles. In contrast, muscladvantage of the broad benebts of exercise, along with the
disuse, as well as the aging process, are associated with redugeotential specibcity of drug action.

mitochondrial quality and quantity in muscle. This has strong

negative implications for whole-body metabolic health and the

preservation of muscle mass. A number of traditional, as well

as novel regulatory pathways exist in muscle that control bottiKey words: aging, calcium signalling, exercise, exercise
biogenesis and mitophagy. Interestingly, although the ablation ofraining, mitochondrial protein import, mitochondrial reticulum,
single regulatory transcription factors within these pathways oftermitophagy, mtDNA, muscle disuse, p53, PPABo-activator-1
leads to a reduction in the basal mitochondrial content of musclglPGC-1 ), reactive oxygen species, Tfam, Tfeb.

INTRODUCTION pharmacological and therapeutic perspectives, because it would
allow for the targeting of specibc signalling pathways, which
The mitochondrial content of any tissue is one of the mostcould serve to augment mitochondrial content and/or function.
highly variable phenotypic features of a cell type. In skeletalDecrements in volume and function in various tissues are
muscle, mitochondrial content depends on the bbre type, anlequently observed in multiple clinically-relevant conditions,
their recruitment patterns during contractile activity. Although including type 2 diabetes, obesity, neurodegenerative disorders,
species differences exist, in human muscle mitochondria tend talong with aging and immobilization [2D6]. Thus, research
be abundant in slow-twitch, type | bbres that are readily recruitedlesigned to investigate how to best ameliorate organelle content
during posture and locomotion, whereas the concentration ofind function is warranted, and recognized to be a highly fundable
mitochondria is considerably less in fast-twitch, type Il Pbrespursuit.
that are only used periodically for explosive movements. Based The steady-state content of a molecule is the product of both
on this, it stands to reason that the cellular energy demand muthe rate of synthesis and the degree of breakdown. Naturally,
be an important determinant in the regulation of mitochondrialthis concept holds true for organelles as well. Thus, steady-
content. This is certainly why the heart, which beats continuouslystate mitochondrial content is a net result of organelle biogenesis
has the highest organelle content of any tissue (30038 (synthesis) and mitophagy (breakdown). Considerable effort has
the cell by volume), whereas fast-twitch white bbres, whichbeen devoted to the understanding of biogenesis over the last
only contract very infrequently, have a very low (263 three decades. Indeed, molecules have been identibed which
mitochondrial concentration [1]. A consistent change in energyappear critical for the maintenance of organelle content in a
demand is the likely cause of why a previously non-exercisedissue-speciPc manner, such as peroxisome proliferator-activated
muscle, which undergoes a period of active contractile activityreceptor (PPAR ) co-activator-1 (PGC-1) family members, for
in the form of regular exercise, increases its mitochondrialexample. On the other hand, our knowledge of the regulation
content to support the increase in energy demand. Although thef mitophagy in the context of cellular energetic disturbances
increase in mitochondrial content following exercise training is aremains in its infancy. However, as discussed below, a greater
well-documented phenomenon, the specibc signalling pathwayeiowledge of transcription factor EB (TFEB), the protein widely
leading from changes in cellular energy demand to an increaseonsidered to be the most important regulator of autophagy
in organelle content still remain to be completely debPnedand lysosomal biogenesis, would shed considerable light on the
Having this knowledge in hand would be valuable from clinical, regulation of mitophagy in various cell types.

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK, AMP-activated protein kinase; COX, cytochrome c oxidase; CS, citrate
synthase; EM, electron microscopy; IMF, intermyobpbrillar; LC3, light chain 3; MitoPS, mitochondrial protein synthesis; MTS, mitochondrial targe ting
sequences; NUGEMP, nuclear genes encoding mitochondrial protein; PGC-1, PPAR y co-activator-1; PIM, protein import machinery; PINK1, PTEN-induced
putative kinase 1; PPARy, peroxisome proliferator-activated receptor y; ROS, reactive oxygen species; SDH, succinate dehydrogenase; SIRT1, sirtuin 1;
SS, subsarcolemmal; TFAM, mitochondrial transcription factor A; TFEB, transcription factor EB; TIM, translocase of the inner mitochondrial membr ane;
TOM, translocase of the outer mitochondrial membrane; ULK1, unc-51-like kinase 1; VDAC1, voltage-dependent anion channel 1.
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In skeletal muscle, a number of proteins have been identibedxist in muscle. These pools of mitochondria are named after
that appear to be important in maintaining basal levels oftheir distinct geographical localization within muscle, such as
mitochondrial content and function. These include PGC-1 the subsarcolemmal (SS) or intermyobbrillar (IMF) organelles
p53, mechanistic target of rapamycin (mTOR) and sirtuin 1[24,25] which reside close to the plasma membrane, or between
(SIRT1). Geneticinactivation of the genes encoding these proteinthe myobbrils respectively. Recent work by Picard et al. [26] and
leads to impaired mitochondrial respiration, and reduced basaithers [27], using both scanning and transmission EM techniques,
mitochondrial concentration in muscle [7D10]. Interestingly,has advanced this methodology to allow snapshot visualizations of
their absence becomes much less important during adaptationsitochondrial morphology and connectivity in three dimensions.
to chronically imposed muscle contractions in animal and For many years, organelle content has been approximated by
cell culture models, as this treatment effectively reversegletermining the activity of enzymes involved in mitochondrial
the functional and biochemical defects observed under basalxidative metabolism, such as succinate dehydrogenase (SDH),
conditions [7D10]. To date, the absence of a single protein doeytochrome: oxidase (COX) or citrate synthase (CS). As enzymes
not appear to abrogate the benebcial effects that chronic muschéthin same metabolic pathway are in Oconstant proportion®
contractile activity, such as that achieved in an exercise trainingvith each other [28], these enzymes are often also employed as
programme, can bring to bear on mitochondrial content andiependable indices of mitochondrial content. Naturally, because
function. This appears to be mainly due to the ability of exercise tof the independent turnover of individual proteins, single protein
activate a number of overlapping intracellular signalling pathwaysnarkers are generally considered to be approximations of
towards mitochondrial biogenesis in skeletal muscle. mitochondrial content. CS and SDH are nuclear-encoded enzymes

that form part of KrebsO cycle and Complex Il, respectively,

whereas COX is a holoenzyme composed of subunits derived from
METHODS USED TO EXPLORE CHANGES IN MITOCHONDRIAIPOth the nuclear and mitochondrial genomes. Thus, COX activity
CONTENT AND EUNCTION may be more representative of the coordinated stoichiometric

expression of the two genomes required for holoenzyme function.
Numerous experimental models exist to modulate mitochondrialhe use of these marker enzymes, or of subunits therein,
content physiologically bothin vitro and in vivo. Exercise often parallels morphometric estimates of mitochondrial volume
training, either of the endurance or intermittent high intensityderived using EM [29], and they provide the advantage of being
variety, are classic and powerful tools to provoke skeletalless time-consuming measures, with less subjective involvement.
mitochondrial biogenesis in skeletal muscle [11]. This can mtDNA content has often been used as a surrogate marker
be achieved in human and rodent models using a variety obéf organelle content as well, however its capacity to replicate
paradigms appropriate to the species being investigated, includirgutonomously suggests that linearity between changes in tissue
voluntary wheel running, regimented treadmill running, cycling oxidative capacity and mtDNA content should be assessed, as
or swimming. Further, techniques involving chronic electrical done previously [30]. Another marker which has gained some
stimulation-induced contractile activity have effectively evolved usage is the inner-membrane phospholipid cardiolipin [31].
to simulate the mitochondrial adaptations in rodent muscle td.ocalized uniquely in mitochondria, this phospholipid can be
an exercise training programme [12,13]. In addition, we [10,14Bneasured using methods such as thin-layer chromatography or
16] and others [17D20] have developed Oexercise-in-a-dish@h performance liquid chromatography. Previous work has
models in cell culture, using depolarizing electrical currents onshown it to be a sensitive indicator of membrane biogenesis in
skeletal muscle myotubes to effectively mimic the changes whictmuscle under conditions of chronic use [32] or disuse [33,34].
occur in skeletal muscle with either acute or chronic exercise Mitochondrial protein synthesis (MitoPS) is another
[10,14]. Pharmacological treatments have also been developadeasurement of organelle biogenesis that can be utilized.
to promote mitochondrial biogenesis, the most common ofMitochondria manufacture 13 mtDNA gene products vital for
which are highlighted below. On the other hand, reductions irelectron transport chain function. MitoPS can be measured by
mitochondrial content are observed in models of muscle inactivityassessing the extent and rate of incorporation of radiolabelled
such as immobilization and denervation [3], as well as duringamino acids into protein in isolated mitochondria [35,36]. This
chronological aging [5]. Regardless of the technique employedmnethod has been used to shed light on the effect of contractile
models such as these have allowed for close examination of thectivity, as both acute exercise and chronic training appear to
changes in organelle quantity and quality that arise, and permaugment overall MitoPS [37,38], whereas MitoPS in specibc
the identibcation of signalling mechanisms which control thesemitochondrial subfractions appears to be both time- and stimulus-
alterations. sensitive [36]. Recent studies have also illustrated the utility of

A number of time-honoured and more recently developedusing heavy watefH,0) labelling to measure MitoPS [39]. This
methods exist for the study of mitochondrial content andmethod will certainly be valuable forimproving our understanding
function. Organelle content can be evaluated most directly usingf the mitochondrial translation system, the study of which has
Buorescence imaging or electron microscopy (EM). In cellbeen underdeveloped in mammalian cells and in whole-body
culture, incubation of cells with Buorescent molecular probesxperimental models.
such as MitoTracker green can provide a relative index of Inadditionto measuring mitochondrial biogenesis, determining
mitochondrial content when compared among treatments. cDONAshanges in mitochondrial function can reveal qualitative
encoding mitochondrially-targeted proteins such as Mito-DsRed2lterations within the organelle that are not observed when
can be transfected into cells and are very useful tools to quantiftheir quantity is being assessed. Mitochondrial function has
mitochondrial morphology, movement dynamics and contentistorically been documented using organelles isolated by
within single cells [16,21,22]. Alternatively, isolated single differential centrifugation. Functional measures usually include
muscle myobbres can be immunohistochemically stained o indicators of basal and active respiration, reactive oxygen species
to identify mitochondrially-localized proteins, again providing (ROS) emission, apoptotic protein release and/or calcium uptake.
valuable insight into the shape of the mitochondrial network [23].Isolated organelles are also useful for understanding processes
EM is better suited to the detailed analysis of bxed tissues, asf mitophagy, as described below. There is no doubt that the
it permits observations on the subdivisions of mitochondria thatemoval of any organelle from its native cellular environment
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disrupts itsn vivo morphology, and thus runs the risk of producing PPAR [47]. PGC-1 levels were found to robustly increase
organelle damage. In the case of mitochondria, several qualitin response to cold exposure in both brown fat and skeletal
control checks can be used to verify the intactness and qualitynuscle, concomitant with a rise in numerous mitochondrial
of the organelles [40]. Further, comparisons among treatmentsarkers. Both PGC-1 and PGC-1 are expressed in tissues
(e.g. trained and untrained muscle) are usually valid if the samwith high mitochondrial activity, including skeletal muscle, and
isolation procedure has been used for both. A popular methodre particularly enriched in oxidative Pbres. Muscle-specibc
emerging in the literature is the use of permeabilized muscle Pbrasverexpression of PGC-1lincreases the transcription of a wide
in respirometry measurements. The main advantages are that thamber of oxidative phosphorylation genes, and substantially
technique is very sensitive, requiring only a few milligrams of augments muscle mitochondrial content [48]. In contrast, whole-
tissue, and there is little chance of damaging the mitochondria ilody deletion orin vitro silencing of either PGC-1 or PGC-
the preparation of the tissue for respirometry. A more completel reduces skeletal muscle mitochondrial content and function
review of the literature in this area has been summarized by Perrgs well as NUGEMP expression [16,49D51]. Investigations using
etal. [41]. muscle-specibc knockout (KO) models have also revealed that the
In contrast with biogenesis, mitochondrial degradation can beablation of PGC-1 led to reductions in mitochondrial content
assessed most simply by the decline in the organelle markeend a bbre type shift from slow type I/lla myosin isoforms to
described above, expressed per gram of tissue weight. Alteratioriast 11x/llb [52]. Intriguingly, adult-inducible PGC-1 muscle
in mitochondrial composition can also be documented by makind<O animals exhibited no change in overall muscle mitochondrial
the same enzyme or protein measurements on isolated, puribedntent, but they did display abnormal structure and function of
organelles. The specibc degradation of mitochondria, termethe organelles, along with reduced exercise capacity [53]. It has
mitophagy, requires more sophisticated analyses, including theeen suggested that with the deletion of only one co-activator,
localization of autophagy adapter proteins, such as the lipidatethere may be compensation by the remaining family member.
form of microtubule-associated protein light chain 3 (LC3-1l) However, no changes in PGC-lwere noted in PGC-1 KO
or p62, on mitochondrial subfractions. Typically these measureanimals [54], or after PGC-1 knockdown in muscle cells in
are best accompanied by immunof3uorescence measures éalture [16], suggesting that no compensation takes place with
single bbres in which autophagosomes can be visualized. C&R*GC-1 when PGC-1 is absent. Further investigation using dual
staining of GFP-tagged LC3 with MitoTracker can reveal theKO strategies have been employed for a deeper understanding
abundance of mitochondria associated with autophagosomesf the molecular mechanisms through which these co-activators
Because mitophagy is a dynamic process, Bux measures acembine toregulate mitochondrial contentand function in skeletal
required for a full interpretation of the data. This is quantipedmuscle. One model used a PGCathole-body KO crossed with
in animal models using prior treatment with microtubule ora muscle-specibc deletion of PGC-]55], whereas the other
lysosomal inhibitors, such as colchicine or chloroquine. Anmodelused mice Roxed for both PGC-dnd PGC-1 whichwere
extensive review of the methodology associated with autophaggblated in muscle with Cre-recombinase driven by a Myogenin-
and mitophagy can be found elsewhere [42]. MEF2 promoter [56]. As expected, these genetic models produced
In summary, mitochondrial content and turnover in muscleanimals with lower mitochondrial markers and impaired function,
can be assessed using a variety of well-established, as weallong with reduced exercise performance, implicating PGC-
as more recently developed technigues. To have the greatest (mainly PGC-1) as a logical target for pharmaceutical
conbdence in these methods, attempts should be made to usenipulations to modify organelle content/function in muscle.
them in combination. Although they need not all be employed, Itis well established that exercise can stimulate the expression
the complexity of the organelle, including its derivation from two of PGC-1 , as muscle contractile activitiz vivo or in vitro
distinct genomes, as well as its unique phospholipid and proteiincreases the transcription and expression of PG(&r,58],
composition, suggests that multiple approaches will provide than effect which is believed to occur through a number of
most easily interpretable results. signalling pathways (Figure 1) that are responsive to changes
in the intracellular environment [59]. Numerous studies have
replicated this Pnding at the mRNA and protein level. The basis
for this increase may be transcriptional, since a single bout of
exercise in humans [60] or rodents [61,62] can result in increased
Transcriptional co-activators respond to cellular signals toPGC-1 transcription. Aerobic exercise also promotes PGC-1
enhance the production of target transcripts through binding wittnuclear translocation [63,64] to up-regulate the transcription of its
transcription factors or nuclear receptors, but not to DNA directly.own mRNA transcription through a positive feedback loop [65], as
The PGC-1 family is made up of three members, PGCRGC-  well as the synthesis of critical NUGEMPs to elicit mitochondrial
1 and PGC-related co-activator (PRC). The mechanism throughiogenesis.
which PGC-1 family members up-regulate gene transcription is Given the impact of exercise on the expression of PGC-1
through docking with transcription factors through the knowndetermining the necessity of this factor in regulating the increase
LXXLL motif, followed by the subsequent recruitment of in mitochondrial content with exercise has been a subject of great
additional proteins that can modify the DNA, such as p300,interest./n vitro silencing of PGC-1 attenuates, but does not
steroid receptor co-activator-1 (SRC-1) and the initiator complexabolish the increase in mitochondrial content following contractile
TRAP/Mediator to promote transcription [43,44]. Interestingly, activity [16]. In vivo, PGC-1 KO animals display decrements
although each family member is capable of inducing a uniquen muscle mitochondrial content and function, which can be
transcriptional proble, they are all involved in the co-activationrestored with chronic endurance training, despite the absence of
of nuclear genes encoding mitochondrial proteins (NUGEMPSs) t¢*GC-1 [7,66]. Moreover, muscle-specibPc PGC-KO animals
regulate mitochondrial content and function [45,46]. do not experience any noticeable impairments in exercise-
Of all the family members, PGC-1has been studied most induced mitochondrial biogenesis [67]. Thus, muscle contractile
intensively and has often been regarded as the Omaster regulasrity and exercise training undoubtedly activate pathways
of mitochondrial biogenesis. It was initially cloned from a that are independent of PGC-%o improve the mitochondrial
two-hybrid screen of brown fat cells as a co-activator for phenotype.

PGC-1 FAMILY OF TRANSCRIPTIONAL CO-ACTIVATORS
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Figure 1 Exercise-induced mitochondrial biogenesis

(A) Muscle contractile activity alters the concentration of several metabolites and molecules involved in initiating mithehogdnetdzisyentstatios of AMP/ATP and
NADt /NADH, as well as cytosolic calcium and ROS. These changes enhance the activity of) nnohhdingf AMBs6<3aMK, p38 MAPK and the deacetylase SIRT1. These prot
can then modify factors involved in the transcriptional response to exercise by either phosphorylation or deacetylationaindtatitigatoe P&GEEYipnd transcription

factors p53, ATF2 and MEF2. P&a@-then enter the nucleus, and interact with transcription factors to induce the transcription of its own gene, or of NUGEMBs. p53 also el
in response to contractile activity, and can induce the expression of NUGEMPs. Once NuGEMP ) arellihemtRiNAsrihede(been translated in the cytosol, they are delivers
to the mitochondrion through th&Ptdr(sisting of the TOM and the TIM complexes. They are then sorted to different mitochondrial compartments. Expression of the mitoc
is accomplished by the actions of TFAM and p53, which enter the matrix and interact with mtDNA to promote transcription f®lleWihghmirntcaetiEeadotespression of both
nuclear- and mitochondria-encoded proteins, the mitochondrial reticul@miglangaamdf{the reticulum involves the fusion of pre-existing organelles, which is accomplished by
proteins MFN1/2 and Opal. Transient increases in ROS during exercise may prompt the ssion of dysfunctional componentsadiinigetoatitolpinagy (seedsglee 2) and
driven by proteins Drp1, Fis1 and others (see text for details).
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A larger portrait of complexity surrounding PGC-has begun  calciumis not solely responsible for triggering contractile activity-
to emerge through the identibcation of an additional upstreanmduced organelle biogenesis. When muscle cells were treated
promoter, as well as alternative splicing of mRNA transcriptswith various intracellular calcium chelators, the transcription
which generate distinct, functional protein products. Initial studiesof cytochromec was reduced, but its transcriptional activity
from independent laboratories describe two additional variantin response to contractile activity was unaffected [80,83].
for PGC-1 in murine skeletal muscle which are synthesizedThese Pndings laid the groundwork for research seeking al-
from an alternative promoter and the use of an alternative prdernative, complementary pathways involved in exercise-induced
exon [68D71]. The original PGC-lhas been labelled as PGC- biogenesis.

1 -a or PGC-11, depending on the scientiPc group, whereas Contractile activity occurs as a result of myosin ATPase-
these new splice variants of PGC;1PGC-1 -b and PGC- induced hydrolysis of ATP to ADP, and the energy released is
1 -c, have been found to code for a functional protein thatused for cross-bridge formation and force generation. Some of
transcriptionally co-activates gene expressionitro andin vivo the resulting ADP is further dephosphorylated by myokinase
[69,70]. These variants of PGC-Jare also found abundantly in to AMP. AMP binds to the subunit of the heterotrimeric
skeletal muscle and brown adipose tissue [69]. The alternativAMPK molecule and enhances its activation [86], allowing
promoter that gives rise to these variants is locateth kb ~ AMPK to phosphorylate downstream targets which are intimately
upstream from the canonical (or proximal) PGCgromoter,and  involved in the control of cellular metabolism [87]. These include
examination of the regulatory factors that control the alternativeacetyl-coA carboxylase and AS160, which promote increases
promoter has revealed similarity to the proximal promoter [71].in lipid oxidation and glucose uptake in muscle respectively.
Gene expression from this upstream promoter appears to b8MPK also plays an important role in the regulation of
coupled to the alternative exonl, known as exonlb, whereasmitochondrial content in skeletal muscle. This is highlighted
the rest of the transcript is identical with the original PGC- by the consequences of muscle-specibc loss-of-function, which
1 -a. This alternative exonlb shortened the transcript and thianclude attenuated expression of mitochondrial genes and
translated protein at the N-terminal, which gave rise to PGCreductions in mitochondrial volume [88]. On the other hand, the
1 -b [72,73]. Alternative transcript splicing from the upstream activation of AMPK increases the expression of a number of genes
promoter also occurs to produce PGC-4, which is further associated with mitochondrial content, including cytochrame
shortened at the N-terminus. These initially described variantSDH and CS [89D91]. This is probably due to several reasons,
were found to positively respond to aerobic exercise in skeletaincluding the ability of AMPK to phosphorylate a protein target
muscle [69]. Furthermore, PGC-4b and PGC-1-c exhibited such as GATA4, and enhance its DNA binding within a GATA/E-
a greater response to exercise than the traditional PG&;1 box region of the PGC-1 promoter [92], thereby increasing
and also accounted for the majority of the increase when totahe expression of PGC-1[58,93,94]. Recent research has also
transcript change was calculated [69]. However, the functions oidentibPed protein kinase A anchoring protein 1 (AKAP1) as an
the translation products of these transcripts remain to be identibeddditional substrate of AMPK in skeletal muscle, an interaction
In addition to the full-length variants of PGC-lthere also exista which provides a direct link between the activation of AMPK
group of protein products approximately 30D37 kDa in size whictand the regulation of mitochondrial respiration [95]. AMPK also
include PGC-14 [57,73D75]. In contrast with the other isoforms, directly phosphorylates PGC-Dbn threonine-177 and serine-538
PGC-1 4 has been described to confer the benebts of resistaneesidues [90], a modiPcation which appears to be critical for PGC-
exercise in skeletal muscle [75], but this remains a controversial feedback activity on its own promoter, and the subsequent
Pnding [76D78]. Foreseeably, through the use of more specibc Kidduction of PGC-1-regulated genes. Indeed, in PGC-KO
and/or transgenic experiments, and further exercise experimentnimals, the effects of AMPK are minimized, suggesting that
the importance of each PGC-1splice variant will be the presence of PGC-1is necessary for many of the metabolic
determined. consequences of AMPK activation in muscle.
Research has indicated that these two signalling systems also
operate together to induce PGC-Lhemical uncoupling of cells
SIGNALLING PATHWAYS TOWARDS MITOCHONDRIAL BIOGE to increases in cytosolic calcium levels, which activates
. This leads to an increase in the expression of PGC-1
A number of signalling pathways activated by contractile activityalong with oxidative phosphorylation genes, an effect which is
are now recognized to be involved in initiating mitochondrial abolished when the increase in calcium is blocked [96]. Under
biogenesis (Figure 1). The most commonly considered pathwaythe more physiological conditions of myotube contractile activity,
based on extended experimental evidence include the contractit@lcium and AMPK activation are critical for an increase in the
activity-associated rise of intracellular calcium, mainly derivedtranscriptional activity of PGC-1, as well as PGC-1 promoter
from sarcoplasmic reticulum sources, and the turnover of ATPactivity [59].
leading to an increase in AMP and the activation of AMP- Inadditiontothese two kinases, p38 MAPK also has pleiotropic
activated protein kinase (AMPK). Early studies, which appliedroles in the regulation of PGC-1 Similar to AMPK, p38 can
calcium ionophores to myotubes in culture, revealed (1) elevatedlso directly phosphorylate the co-activator [97]. p38 is also
mitochondrial enzyme activities [79], (2) an increase in thehighly responsive to elevations in ROS produced during acute
expression of selected genes associated with mitochondrigxercise in muscle [59], and it is sufbcient to up-regulate PGC-1
biogenesis [80,81] and (3) a dependence on both calciummRNA, particularly through the isoform [98]. p38 also regulates
calmodulin kinase [82,83] and protein kinase C [83]. ThePGC-1 in a transcriptional manner by the phosphorylation of
importance of calcium in instigating mitochondrial biogenesistranscription factors such as MEF2 and ATF2, known regulators
has been further fortiped by results using parvalbumin KOof the promoter [99], and pharmacological inhibition of p38in
and overexpressing animals. By modulating the expression afultured muscle cells attenuates the transcription of PGC-1
parvalbumin, a protein which sequesters calcium, it appearfs9]. In summary, elevations in cytosolic calcium, along with
that mitochondrial volume is positively correlated with the the activation of AMPK and p38 (possibly via ROS), are vital
availability of cytosolic calcium in muscle [84,85]. However, contractile activity-induced events which share the responsibility
in vitro experiments with cultured muscle cells have revealed thatf activating PGC-1 during exercise.
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REGULATION OF MITOCHONDRIAL MORPHOLOGY mitochondrial biogenesis and function. The value of a functional
. . mitochondrial import system is highlighted by the number of

In skeletal muscle, the pioneering work of Brooks and Co-gigeages or disorders which arise when protein import machinery
workers [24,100], Kayar and Banchero [101] and Ogata angp\y) components are dysfunctional or absent [117]. Further, it
Yamasaki [25,102] has led to an appreciation that skeletal muscl as been shown that the protein import system is adaptable in

mitpchondrial morphology is complex, and regjonally distinct in response to physiological perturbations in muscle such as chronic
various compartments of the muscle bbre. This has been furth ercise or muscle disuse. as mentioned below.

veribed more rgcently [27] W|th.|r’r.1pllcat|ons for the effective Over the last several decades, techniques to study mitochondrial
subcellular distribution of ATP within muscle. As noted above, rotein import have been developed and rebned from the

mitochondria in both heart and skeletal muscle can be d'V'd.e‘gioneering methods of the Schatz and Neupert laboratories [118D
into morphologically-distinct subfractions, differentiated by their 1 5] “gyiey, nuclear-encoded precursor proteins are transcribed
location, function and biochemical composition [26’40’103'104]"from cDNA,then translatedn virro in the presence of°S-

SS mitoqhondria tend towards greater c!rcularity gnd are lesgethionine. They are subsequently incubated with isolated
involved in reticular networks than IMF mitochondria, however mitochondria, and the import is monitored over time using

some continuity exists between these mitochondrial fraCtion%utoradiography. This technique is a sensitive indicator of

[26,101]. Itnbchlltu'red Ce"hs.' rr]nltochogdngteglhlblt Veiry.dygamt'ﬁ.mitochondrial function, since import into the matrix requires
movement benaviours which are undoubtedly constrained withiy, jntact membrane potential, ATP synthesis, and adequate

the context of mature muscle celis vivo. Further, there is expression of the PIM.

evidence that dynamic changes in mitochondrial shape can takeThe mitochondrial import system (Figure 1) encompasses

Efscfnigl{(?:t?gr?ss?otrorr?e?;nbg(;ﬁstr)r?lﬁ(c))é]exerCise [105], which likelygeyerq) large machinery complexes found across the inner and

Small f d mitochondri d f pssi outer mitochondrial membranes (IMM and OMM respectively)
Small fragmented mitochondria are a product of Pssion eventg, ; ¢, qjjitate the transfer of newly synthesized proteins destined
(F'gl.”e. 1), regglatec_j In part t.)y dynam!n-related protein 1 (Drp.l)'for mitochondria. These proteins are synthesized in the cytosol
and its interaction with the mitochondrial receptors mltochondnaland chaperoned to the mitochondrial outer membrane. However
tis(,)s;onl proteltn 1t(Ff'Sl.) an? m!:ocnongr!al .btssmn factotr. ('\I/Iff)dueto the double membrane structure of mitochondria, a gateway
[ F]> n contrast, u5|on(;)bm| ochon ”E’;‘ Into m_oreore "iu & for mitochondrial proteins is required. Mitochondria-destined
con fgu_rat_lonfs IS prol\r;l;)tf )éoha?czatrl%% y plrlotefln (h pk? ) andytosolic Oprecursor® proteins contain mitochondrial targeting
mltolusw(l]I lso grg‘é'l 189 1""1”0 O“ [108], all o V‘a Ic I aredsequences (MTS) that assist in the sorting of these proteins [121].
{jeg_:lzu ate . % -1[109,110]. ver-exderSﬁlon ?n lse ectel For example, a positively charged N-terminus presequence serves
eletion of these proteins in mouse models has clearly revea target a protein to the matrix compartment [122]. The precursor
their_functionality in determining mitochondrial morphology ,y6in is recognized by molecular chaperones such as cytosolic
[111D113]. Thus, the ratio of bssion to fusion regulatory protein sp70, and unravelled in an ATP-dependent manner to make the

seems to be a reliable index that determines the connectivity, siainimport-competent, and then directed to the mitochondrion.
of the mitochondrial network within muscle, and these proteinsrpis-conformational change allows entry of the precursor into
are inducible under conqmons of EXercise, dlspse apq a9NY%e translocase of the outer mitochondrial membrane (TOM)
For example, after a period of chronic contractile activity, the oy njey \which consists of several preprotein receptors (TOM20,
Pssion to fuspn protein ratio diminishes [1141' leading to atqyo; TOM70) responsible for the recognition of the MTS
more intact mitochondrial reticulum, a conformation that favours 12391’25] Once through the TOM complex, precursor proteins
less ROS production and more efbcient lipid metabolism. 1Ny ceeq to the translocase of the inner mitochondrial membrane
contrast, in aged muscle, or in muscle subject to chronic disus TIM) and are sorted via the TIM23 complex [126,127]
]Ehe ratlot(g these ﬁrotelr:s 'St rg\’sg’gd [134],t_lead|n3 0 MOrerereater, proteins are actively pulled into the matrix with the
ragmented organelles, elevate production and Increaseigjstance of mitochondrial Hsp70 and the precursor sequence

rates of mitophagy. : . . . .
X . - is cleaved by mitochondrial processing peptidase (MPP). Lastly,
Interestingly, recent bndings seem to indicate that the Contrcﬁatrix proteins are refolded into their native conformation with

of mitochondrial bssion, mitophagy and biogenesis are exerte, . ,qqjstance of molecular chaperones, such as Hsp60 and
by similar signalling events. It has recently been shown thab ’

AMPK_ activation i i Ll A leads to th PN10. This results in the complete import and maturation
activaton In response to cellular stress 1eads 10 M€yt matrix-destined proteins [128]. Precursor proteins destined

phosphorylation of Mf which promotes organelle bssion [115].¢, e mitochondrial subcompartments use a variety of other

Tpus.,t it hap%e?‘fls thatt AtMPK .|ts_at thg neXl:s ?f thel Ctontroflproteins and routes to their bnal destination within the organelle,
of mitochondrial content, as it is an important regulator of oo oviewed elsewhere [129].

mitochondrial clearance, while simultaneously acting to promote The arrival and incorporation of proteins into the organelle

b!ogeneS|S via its activation and induction of PGC-las produces an expansion of the mitochondrial reticulum. As such,
discussed above. mitochondrial protein import is a tightly regulated system that is
intimately linked to cellular energetic status, and is impacted in
MITOCHONDRIAL PROTEIN IMPORT response to sti_mulli which can induce or suppress mitochondrjal
biogenesis. This likely operates as a mechanism through which
The mitochondrial proteome consists of a vast number of proteinmitochondrial reticulum size and continuity can be modibed
required for proper organelle function. When compared with othein response to the changing metabolic demands of the muscle.
organelles, the mitochondrial proteome is unique as it is encodelhdeed, protein import of matrix-destined proteins, such as
by two sets of genomes. The MitoCarta2.0 database has revealedtochondrial transcription factor A (TFAM) and outer membrane
that the nuclear genome codes for over 1100 gene products [116)roteins such as TOM40, into skeletal muscle mitochondria is
whereas only 13 proteins are encoded by mtDNA. Due to the vasiccelerated as an adaptation to chronic contractile activity [130D
number of NUGEMPs that must be transcribed from nuclear DNA132]. To assist in this increase in mitochondrial protein import, a
translated and subsequently imported into the mitochondriongoncomitant elevation in the rate of the TOM complex assembly
coordinated expression of these two genomes is vital for propenas also been observed during increases in muscle activity [132].
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In contrast, muscle inactivity impairs import of mitochondrial specibcally by phosphorylation by cellular energy responsive
matrix-destined proteins quite rapidly following the onset of kinases such as protein kinase A (PKA) and extracellular signal-
the stimulus [133,134], coinciding with a loss of mitochondrial regulated protein kinases (ERK1/2) [155,156]. This represents a
content. This is accompanied by depleted ATP levels andnechanism by which mtDNA transcription can be modibed in
reduced mitochondrial membrane potential. Collectively, thes@esponse to intracellular conditions.
data underscore the adaptive plasticity of protein import and The role of TFAM in skeletal muscle has been highlighted by
assembly in response to changes in skeletal muscle contractiteuscle-specibc loss-of-function studies, which have identiped
activity. this protein as a required factor for maintaining normal
Interestingly, in cases where mitochondrial protein import ismitochondrial respiratory chain function and muscle strength
defective, endurance exercise may show promise as a therapeufic1,154]. In skeletal muscle cells, the protein expression of
modality. In a recent study, a novel role for the apoptosis-TFAM and its localization to the mitochondrial matrix correlates
associated outer membrane proteins Bax and Bak in the regulatiamell with the expression of mtDNA-encoded genes [157], a
of mitochondrial protein import was identibed [135]. A double relationship which holds true following both chronic muscle
KO model of these two proteins reduced mitochondrial proteinactivity and inactivity [131,134]. Increased Tfam gene expression
import and diminished the expression of components of thén muscle has been reported following a single acute session of
PIM. However, this impairment was reversed following anendurance exercise in both rodent and humans [158D160], which
endurance training programme, accompanied by an increase in tigenot surprising since TFAM expression is regulated by PGC-1
expression of PIM components. Alternatively, pharmacological[161], which is robustly responsive to exercise. Further, a rise in
activation can also be utilized to augment components ofotal cellular TFAM protein content has been reported in multiple
mitochondrial PIM in muscle. For example, thyroid hormone exercise training paradigms [9,16,131,162D165]. The changes in
is known to induce mitochondrial biogenesis [136], as well asTFAM protein content during mitochondrial biogenesis occur
enhance protein import in cardiac muscle [137]. in conjunction with a general increase in organelle protein
With the renewed interest in mitochondrial protein import import during this process [130], resulting in an increase in the
in recent years, it has become apparent that this system is @amount of TFAM within the mitochondrial matrix, as well as
highly adaptable rheostat, which appropriately matches changeake quantity of TFAM bound to the D-loop region of mtDNA
in mitochondrial content with the rate and capacity to import[131]. These changes undoubtedly contribute to the increased
proteins into the organelle. Thus, targeting this system withexpression of mtDNA-encoded genes required for the expansion
exercise or pharmaceuticals appears to be an attractive meansdbthe mitochondrial network in muscle for exercise-induced
modulate mitochondrial mass, and may serve as a useful therapgitochondrial biogenesis.
for mitochondrial protein import defects.

p53 — NUCLEAR AND MITOCHONDRIAL GENOME EFFECTS

p53 is a transcription factor which has been canonically regarded

The incorporation of proteins derived from both the nuclearas a tumour suppressor [166], as it promotes the expression
and mitochondrial genomes is crucial for the construction ofof genes involved in antioxidant defence, autophagy, apoptosis
the multi-subunit complexes which make up the ETC. mtDNAand DNA damage [167D169]. Recently, p53 has been further
gene expression is controlled by a non-coding portion of thecategorized as a critical regulator of mitochondria [170D172],
DNA, referred to as the D-loop regulatory region. This segmentas work in various cell types has veribed a requirement for p53 in
of DNA modulates the expression of 13 mRNAs encodingmaintaining basal mitochondrial content [8,173D177]. One of the
components of the ETC, in addition to 2 tRNAs and 22 rRNAsunique traits of p53 is its apparent ability to regulate transcription
which assist in the translation of the mRNAs. Interestingly, thein both the nuclear and mitochondrial genomes [178D180]. Since
transcription of mtDNA is dependent on three factors whichmitochondrial function relies on the synchronized expression
are completely nuclear-encoded, including mitochondrial RNAof these genomes, it is not surprising that a protein with the
polymerase (POLRMT), mitochondrial transcription factor B2 capacity to modulate gene expression in both the nucleus and
(TFB2M) and TFAM [138]. Although controversy exists as to the the mitochondrion should play a vital role in mitochondrial
exact nature through which these components are organized abibgenesis.
interact to modulate transcriptian vivo, their role in governing Studies have conbrmed that p53 is capable of regulating genes
mtDNA transcription is widely accepted. involved in oxidative metabolism at the transcriptional level, such

Within the mitochondrion, the circular mtDNA is condensed as the nuclear-encoded transcription factors TFAM [174,181] and
and packaged in multi-protein complexes called nucleoids. TFAMNRF-1 [174], in addition to synthesis of cytochromexidase
is one of the major components of the nucleoid [139D141], and is2 (SCO2), a protein which assists in the assembly of the ETC
core component of the mtDNA transcription machinery (Figure 1)[176]. Further, PGC-1 contains a putative binding site for p53 in
[142], with an additional role in mtDNA replication and packaging its promoter [92], and its protein level appears to be reduced in
[139,143,144]. This protein contains two high-motility group p53 KO mice [8]. With respect to mtDNA-encoded genes, p53 can
(HMG) domains, which permit it to bend, wrap and unwind DNA. transcriptionally regulate the expression of cytochrergidase
Accordingly, TFAM is capable of distorting mtDNA promoters subunit | (COX 1) of the COX holoenzyme [160] and 16S RNA
into a OU-turnO-like conformation [145D147], and provides thil77]. The ability of p53 to inBuence the transcription of mtDNA
other core proteins with access to the promoter [148] to stimulatés presumably aided by the physical interaction between p53 and
mitochondrial transcription. The indispensability of TFAM is TFAM [160,182].
highlighted by loss-of-function studies in which complete ablation In skeletal muscle, whole-body p53 KO mice display a
of this protein is embryonic lethal [149], whereas tissue-specibeceduction in basal mitochondrial content, in conjunction with
or partial deletions result in severe respiratory chain defectslepciencies in the assembly of the COX holoenzyme and
[149D154]. TFAM-mtDNA binding and mtDNA transcription can disorganized and disrupted mitochondrial cristae [8,175]. These
be modulated through post-translational modibcation of TFAM,structural changes are correlated with a lower respiratory capacity,

MITOCHONDRIAL TRANSCRIPTION FACTOR A
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and an increased mitochondrial ROS emission [8]. The excessfthe pathways and moleculesinvolved ininitiating and executing
ROS can damage mitochondrial proteins and serve as a signal fautophagy can be found elsewhere [195,196].
their ubiquitination and subsequent degradation by mitochondrial- The more selective autophagy of mitochondria is termed
specibc autophagy [183]. Indeed, skeletal muscle mitochondrimitophagy, and in this pathway, additional regulatory
from p53 KO mice are ubiquitinated to a greater extent, and haveteps are required. When mitochondria are functional,
higher levels of localized LC3-11, suggesting a greater basal rat¢hey maintain a specibc mitochondrial membrane potential,
of organelle degradation via mitophagy [174]. permitting normal levels of mitochondrial protein import and
Although chronic endurance exercise training can increasexidative phosphorylation. However, when mitochondria become
total cellular p53 protein content in skeletal muscle [184], adysfunctional, as indicated by a dissipation of the membrane
role for p53 in the regulation of signalling towards mitochondrial potential, a series of steps leading to their degradation is initiated.
biogenesis following a single session of endurance exercise hdhe reduction in membrane potential arrests the import of PTEN-
also been uncovered. p53 can be post-translationally modibed bgduced putative kinase 1 (PINK1) into the organelle, where it
phosphorylation on serine-15 residue (serine-18 in mice), whiclkvould normally be degraded [197]. Instead, PINK1 accumulates
increases its stability and activity. This site id@ua fide target  on the outer membrane where it recruits the E3 ubiquitin ligase
of p38 MAPK [185] and AMPK [186], two kinases which are Parkin [197,198]. Parkin ubiquitinates outer membrane proteins
sensitive to intra- and extra-cellular changes which occur duringuch as voltage-dependent anion channel 1 (VDAC1) [199,200]
exercise [58,61,187]. It is not surprising then that several modeland mitofusin isoforms [201D203]. The ubiquitin chains formed
of acute endurance exercise have been shown to increase tbe mitochondrial proteins then act as an anchor for p62, a
phosphorylation of p53 at this site [8,188,189]. Interestingly,protein which provides a physical link between ubiquitinated
genetic deletion of p53 can hinder the responsiveness of p38ubstrates and LC3, allowing for the dysfunctional component
MAPK and AMPK to acute exercise [174], and in turn, can impair of the mitochondrion to be encapsulated in an autophagosome
the rate of PGC-1 translocation to the nucleus, as well as the[200,204]. The autophagosome is then trafbcked to the lysosome,
transcription of thePgc-1 gene, as well as other NUGEMPSs, the two structures fuse, and the contents of the autophagosome
following acute exercise [174]. are degraded by a multitude of lysosomal proteolytic enzymes,
Research has also provided evidence for the translocation of p5ich as Cathepsin D (Figure 2) [205].
to the mitochondria following exercise, stimulating the formation Exercise induces changes in skeletal muscle which requires
of complexes between p53 and Tfam, as well as between p53 aride remodelling of the tissue and its organelles, such as
mtDNA D-loop region (Figure 1). This appears to be critical mitochondria. Although lysosomes have been relatively ignoredin
for the expression of mtDNA-encoded genes, since p53 KQhe adaptations to exercise, it has been speculated that remodelling
animals have a reduced expression of mtDNA encoded transcripterough the autophagy system, including lysosomes, may be
following exercise [160]. Additionally, p53 is a known substrate required for skeletal muscle adaptations to exercise [64,206].
of SIRT1, an NAD-dependent deacetylase [190]. DeacetylatiorEarly work had described a role for autophagic clearance in
of p53 also occurs following exercise, prompting its translocationmaintaining protein homoeostasis in skeletal muscle following
to the nucleus [191]. Irrespective of where p53 is destined, itexercise [207,208]. Since then, a number of studies have
activation and stabilization in response to exercise looks to be highlighted the importance of autophagy in skeletal muscle during
means through which exercise-induced mitochondrial biogenesisxercise, and it is now recognized that acute exercise is a reliable
is mediated. Interestingly however, while p53 KO mice have astimulus to induce autophagy [64,174,209D217]. Activation of
reduced skeletal muscle mitochondrial content, exercise trainingLK1 in skeletal muscle, a marker of autophagic induction, has
appears to be capable of restoring mitochondrial content evebeen demonstrated following several acute exercise paradigms
when p53 is absent [8]. This indicates that p53 alone is nof213D215], suggesting an increase in the signalling towards
necessarily required for the mitochondrial adaptations to longautophagy. Further, Beclinl, another critical protein involved
term endurance exercise training, despite being vital for the acute the initial steps of the generation of the autophagosomal
signalling and transcriptional responses to a single bout of exercisgtructure, has also been shown to be activated with an acute
[174]. Further delineation of the necessity of p53 for long-termbout of exercise [209]. Acute exercise also increases total cellular
mitochondrial adaptations to endurance training is merited. Parkin protein expression, the localization of mitophagic markers
to mitochondria and mitochondrial LC3-Il Bux in skeletal muscle
[64,174]. PGC-1 appears to be involved in this process, as PGC-
1 KO animals exhibit diminished rates of Parkin recruitment
IEP the mitochondrion, and an attenuation in the rate at which
mitophagy proceeds following a single bout of endurance exercise
[64]. Alternatively, overexpression of PGC-laugmented the
Skeletal muscle cells are capable of maintaining their functionaéxpression of autophagy markers in skeletal muscle following
and structural quality through the breakdown of damaged aneéndurance exercise and reduced basal p62 levels [218]. Together,
dysregulated cellular organelles by macroautophagy (hereaftéhese data suggest a dual role for this transcriptional co-activator,
referred to as autophagy). This cellular degradation systenn both promoting exercise-induced mitochondrial biogenesis,
sequesters targeted substrates within autophagosomes which,viile simultaneously modulating exercise-induced mitochondrial
turn, fuse with lysosomes where the encapsulated substrates ategradation via mitophagy [64].
degraded. Autophagy is initiated by the activation of unc-51- A growing number of studies have attempted to identify a
like kinase 1 (ULK1) [192] and Beclinl complex [193], which role of TFEB, a master regulator for lysosomal biogenesis,
assists in the formation of double-membrane structures calleth autophagic regulation [219D221]. Lysosomal and autophagic
phagophores around organelles and substrates, isolating the targeines possess specibc promoter regions called Coordinated
to be degraded (Figure 2). The phagophore membrane is thdrysosomal Expression and Regulation (CLEAR) sites which
extended through the recruitment of additional LC3-II, which isare targets for TFEB binding [220]. During non-stressful
created by the lipidation of LC3-1 by the action of several selectconditions, TFEB is located in the cytosol and is stabilized
autophagy-related genes (ATGs) [194]. A more complete reviehy mTORC1-mediated phosphorylation [222,223]. However,

MITOCHONDRIAL TURNOVER MECHANISMS/MITOPHAGY AN
TFEB

© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.



Mitochondrial biogenesis in muscle 2303

Mitophagy
Exercise ., @P ®) p
signals | AT
G ‘”'lC:::

0
*
»
»
»
»

»

\(D)

QoA

.
.
.
.
[}
.
.
[}
.
.
.
.
.
i

Phagophore (C) 1

Autophagosome

~

®|
Lysosomal-related \
genes

(E) Lysosomal

biogenesis

Autolysosome

Figure 2 Mitophagy in skeletal muscle

Although low levels of basal mitochondrial turnover occur continuously, changes in the cellular environment, such as exertseybahitiisasEtss deg)Exércise

can begin the initial steps required for the autophagosome formation, including the activation of the ULK1 and Beclinl commpégiars of tie péragiopioeefowhich is
composed of lipidated LC3-1I molecules. In order to optimize the function of the mitochondrial network, dysfunctional dagtimgwhthreistiteehemoirdir(der basal
conditions, the mitochondrial kinase PINK1 is imported into the mitochondrion and degraded. However, when mitochondsiddsecireie cheshbrefenadtémtial, resulting in
a stabilization of PINK1 on the outer mitochondrial ige®icarstabilized, it can serve as a receptor for the E3 ubiquitin ligase Parkin, which translocates to the mitochondric
ubiquitinate mitochondrial proteins, such as VDAC and the mitofusins. These proteins that have been targeted for degratetierbsedRkeklith therpbsgs a bridge between
ubiquitin-tagged proteins and LC3-1I. The phagophore continues to expand and surround the targeted @prtiotil cbthpletghnefieapsulBjethé changes in the cellular
environment can also activate certain proteins involved in the regulation of autophagy, mitophagy and lysosomal biogenesi3FiBnisl{herastard @fEiGtbr of lysosomal
biogenesis, which when activated by dephosphorylation, can enter the nucleus to initiate a transcriptional programme tinicelsa8cRya0sbis dheondster regulator of
mitochondrial biogenesis, which has also been shown to be involved in the transcriptional regulation of autophagy and eetopi0ykinicTadB mbetieen identi ed in
other cell types, however the exact nature of this relationship is still under investigation in skeletal muscle. Nonethelegsy @argphadmsdegradedtean fuse with lysosomes
(F), the cargo can be broken down into their constituent parts by lysosByrehetizgmesdgased back into the cell.

TFEB is dephosphorylated and can translocate to the nucleususcle are increased following acute exercise [208], the latter
in response to various stimuli [219,221,224] including exerciseof which is a transcriptional target of TFEB [220], the exact role

[225], suggesting a potential role for this factor in exercise-of TFEB in regulating this process remains unclear.

associated lysosomal biogenesis and function. Although the Recently, Vainshtein et al. [226] demonstrated that denervation,
activity of lysosomal enzymes cathepsin C and D in skeletawhich promotes mitochondrial degradation and mitophagy Bux,
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markedly increases TFEB protein expression. Interestinglydirect or indirect inhibition of several intracellular degradation
deletion of PGC-1 attenuated this increase and impaired pathways[226,238,241,242,244D247]. It has also been shown that
TFEB nuclear translocation, whereas over-expression of PGGaverexpression of mitochondrial fusion protein Opal preserves
1 augmented TFEB expression. These data implicate a role fanitochondrial function, and also protects against loss of muscle
PGC-1 as a major regulator of TFEB activity and expression,mass during denervation [112]. Conversely, the over-activation
as well as mitophagy Rux, in skeletal muscle. The data als@f mitochondrial Pssion in muscle is sufbcient to fragment the
suggest the presence of a tight-knit relationship between PGC-1mitochondrial network and drastically impair organelle function,
and TFEB in skeletal muscle, which has been well documentedn effect which directly results in muscle atrophy [111,248]. Taken
in other cell types [221,227]. Future work further describingtogether, these studies highlight the intimate link between an
the relationship between these two transcriptional regulators iimtact mitochondrial network and optimal mitochondrial function,
skeletal muscle metabolism will be important for a more completewith the maintenance of muscle mass. Thus, directly targeting
understanding of mitochondrial turnover in muscle. mitochondrial function, as well as preserving mitochondrial
reticulum integrity, may be viable means to combating muscle
atrophy during muscle inactivity.
IMPACT OF MUSCLE DISUSE ON MITOCHONDRIAL TURNOVER Muscle disuse_also increases the expre_ssipn of a number of
autophagy proteins, as well as the localization of LC3-Il on
Chronic muscle inactivity is a powerful stimulus to induce mitochondria [23,249], resulting in an increase in autophagy
muscle wasting. To study muscle disuse, several invasivand mitophagy RBux [226]. Despite this apparent enhancement
and non-invasive experimental models have been traditionallpf the removal of dysfunctional organelles during disuse, the
employed, which provide insight into the molecular mechanismsontinued presence of poorly functioning mitochondria within
through which this occurs. Rodent models of reduced musclelisused muscle suggests thatthe elevated mitophagy is insufpcient
activity, such as hindlimb casting and tail suspension, haveo adequately restore organelle homoeostasis. Thus, therapeutic
been utilized to investigate the impact of inactivity on musclemethods to enhance mitochondrial biogenesis, or to stimulate
phenotype. These models have been developed to simulaferther mitophagy, possibly via agents which signal through PGC-
selective human circumstances, such as microgravity during [64,226], would be benebcial in this respect.
spacefight or prolonged bed rest [228,229]. In contrast with
these non-invasive techniques, denervation provides a surgical
method to mdyce muscle disuse, whereby_the neural innervation ;A =T OF AGING AND EXERCISE ON MUSCLE MITOCHONDRIA
of the muscle is ablated by neurectomy. This completely removes
nerve-muscle communication, and can rapidly induce atrophy\ wealth of scientibc literature shows that aging and physical
[133,134,230]. inactivity lead to reduced mitochondrial content and function in
Models of muscle inactivity are also useful as experimentaimuscle (cf. [5,250,251] for reviews of current controversies in the
paradigms to reduce mitochondrial content, and to studypeld). As mentioned above, mitochondrial function is implicated
mitochondrial turnover. Studies using EM have noted that musclé the maintenance of muscle mass. A decline in mitochondrial
disuse induces a loss of mitochondria [114,231,232], and théunction is believed to be one of the major underlying causes
mitochondria which remain are smaller, more fragmented, an@f the sarcopenia (loss of muscle mass and strength) evident
have reductions in cristae density [231D236]. These alterations anéth old age. In addition, mitochondrial dysfunction is known to
echoed by a reduction in the activity and expression of membranexccompany the age-related diseases of obesity and type 2 diabetes
embedded and mitochondrial matrix enzymes such as COX252,253]. Thus, the decrements in mitochondrial content and
SDH and CS [33,133,236D238], alongside impairments in ATRunction with age play a vital role in the declining metabolic health
synthesis and elevations in ROS emission [23,34,133,230,239andscape evident in modern society. Therefore a comprehensive
These decrements in organelle function negatively impactinderstanding of these organelles and how they may be remedied
mitochondrial protein import, which is also suppressed duringwith aging will ultimately contribute to greater health outcomes
muscle disuse [133]. Taken together, research in this area stronglgr the aging population.
indicates that prolonged muscle disuse causes reductions inA decline in organelle content with age is supported by
both mitochondrial content and function, suggesting that themany studies which report reduced protein markers and mtDNA
underlying molecular basis for this decay is worthy of study fromcontent, along with Krebs® cycle and ETC enzyme activities
a therapeutic perspective. [5,254b260]. Additionally, electron micrograph evidence of
The loss in mitochondrial content with muscle disuse is, in partdiminished IMF mitochondrial size and a reduced thickness
due to a reduction in the drive for mitochondrial biogenesis. Aof the SS mitochondrial layer [114,261D263], supports the
dramatic drop in PGC-1 mRNA content occurs within the brst biochemical pPndings of reduced mitochondrial content with
day following denervation [240,241], which remains depressedging. Mitochondrial fragmentation is also prominent in aging
for weeks [236,240D242]. PGC-protein content also is reduced muscle, and is probably a result of an imbalance in the ratios of
[230,238], along with the expression of other factors whichproteinsthatregulate morphology of the organelles through bssion
positively regulate mitochondrial biogenesis, including ERR and fusion [114]. These alterations in mitochondrial structure are
and NRF-1/2 [236,243]. This culminates in a loss of total cellularaccompanied by defects in mitochondrial respiration [264,265],
TFAM protein content [230,236] and intra-mitochondrial TFAM, which may be a consequence of reduced MitoPS [35] or increased
which lessens mtDNA copy humber and impairs mtDNA-encodedincoupling of oxygen consumption to ATP synthesis [264].
gene expression [134,243]. Further, the expression of bPssion arfdirthermore, accumulation of dysfunctional organelles may occur
fusion proteins involved in modifying mitochondrial connectivity through impaired mitophagy/autophagy processes that are unable
shift to favour mitochondrial bssion, causing fragmentation of theto clear the damaged organelle debris from the cellular milieu.
mitochondrial network [114]. Indeed, in aged muscle, evidence has shown an accumulation of
The overexpression of PGC-1is sufpcient to mitigate the undigested material, termed lipofuscin [266]. This phenomenon
loss of mitochondrial mass during muscle disuse, and this isnay also contribute to the cellular damage, exacerbating apoptosis
accompanied by a reduction in muscle atrophy, likely via theand skeletal muscle loss.
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The underlying cellular basis for the decline in mitochondrial [250,279,280], and the level of physical activity of the individual
content and function in skeletal muscle with age remainss certainly one of the most important determinants of organelle
controversial. Maintenance of organelle content and functiorfunction in aging muscle. However, cross-sectional studies do
encompasses numerous molecular events and alteration in angt allow for the strongest conclusions because of the inherently
aspect (i.e. decreased synthesis and/or increased degradati@ijergent genetic and behavioural characteristics of the subjects.
could impact organelle homoeostasis. Important steps that couldls discussed in Figure 3, appropriately-dosed exercise can be
be altered include transcriptional regulation of NUGEMPs orused to facilitate the interpretation of whether decrements in
of mtDNA, post-transcriptional trafbcking of nuclear-encodedmitochondria (content or function) are due to physical inactivity,
proteins into the organelle or alterations in clearance ofor agingper se. For example, if the largely OnormalO decrease in
the organelles. Mitochondrial protein import and holoenzymemitochondrial content observed in aging individuals is completely
assembly pathways have been found to be unaffected with ageversed by a comparable training programme at the same relative
[132,261]. Further, mtDNA deletions and point mutations occurintensity and duration as in young individuals, then one could
with increasing incidence with age, but appear to occur in lateinterpret the decrement prior to training as a consequence of
life, after the onset of the decline in mitochondrial function physical inactivity [281]. On the other hand, if a debPcit in the
[256,267,268], suggesting that neither impairments in proteiradaptation of the muscle persists after the training regimen, then
import, ETC enzyme assembly nor mtDNA integrity are primarythis would imply that aged muscle has an inherent debcit in
causal factors in the decline of organelle function. the pathways that maintain mitochondria that is independent of

However, it is known that PGC-1ImRNA and protein content physical activity levels.
are reduced in both slow- and fast-twitch muscles with age [269] Our understanding of the molecular regulation of mitochondrial
along with decrements in their downstream targets [262]. Thidhiogenesis in aging muscle has benebted from the use of
suggests that reductions in mitochondrial function or contentodent models of exercise. These afford the possibility of
could be attributable to the loss of this important co-activator.strict control over the absolute training workload and in depth
In support of this, overexpression of PGC-kpecibcally in  examination of the molecular mechanisms. Using genetically
skeletal muscle of aged animals retains mitochondrial conterfitomogeneous Fischer Brown Norway/F1 hybrid rats, we and
and function, and protects from sarcopenia [270]. Interestinglypthers have previously demonstrated that the initial signalling
endurance training is also capable of rescuing the debcienagsponse to acute contractile activity [282], as well as the
in mitochondrial content and function in aged skeletal musclesubsequent adaptation to a standardized chronic contractile
However, this benepcial effect of endurance training with ageactivity regimen is attenuated [262], or delayed [283], in
requires PGC-1, as training is incapable of rescuing the comparison with younger animals. This blunted adaptive
mitochondrial decline in aged PGC-1KO mice [271]. Thus, mitochondrial response was attributable to reduced elevations
the decline in PGC-1 (and/or one of its isoforms) expression of PGC-1 and TFAM, in addition to lack of exercise-induced
accompanied by a reduction in the transcription of NuGEMPsalterations in PIM components in aged muscle. These data
may be one of the most compelling reasons for the decrease iflustrate the potential corrective nature of exercise in ameliorating
organelle content with age. organelle dysfunction, but also suggest that the kinetics of

Lastly in regards to PGC-1 it has recently been identibed mitochondrial adaptations in old muscle are delayed in response
to also have a role in autophagy/mitophagy [272]. Thereforeto an exercise regimen. These data also suggest that an inherent
a decline of this co-activator may impact quality control debcit exists in muscle which is Oage-related® and that can
mechanisms in aged muscle, through decreased biogenesis amdy be partially rescued by exercise. It should nonetheless be
decreased clearance. If old organelles are not being purgedear that exercise remains an important therapeutic intervention
from the cellular environment, and they are becoming increasingo ameliorate this mitochondrial decline and restore organelle
dysfunctional, this would lead to increased ROS productionfunction, at least in part, with age.
mtDNA damage, nuclear DNA fragmentation and the induction
of muscle atrophy. Further research in this area is warranted tPHARMACOLOGICAL ACTIVATION OF MITOCHONDRIAL
gain a comprehensive picture of the dual role for PGCil  BIOGENESIS
mitochondrial maintenance with aging.

An important issue to resolve in the aging literature is
whether the decrements in mitochondria observed with ag
are a result of aging-related declines in the processes whic
determine mitochondrial maintenance in muscle (i.e. biogenesi
and mitophagy), or whether these can be attributed, partiall

or entirely, to reductions in physical activity which accompany : A .
aging. It is known, for example, that very active older individuals &rea of research [284,285]. Physical activity induces metabolic

retain higher levels of mitochondrial content and respirationalteratlons n multl_ple tissues and Improvements in multl-(_)rgan
[273D275], and that ROS production appears to be equ stems that are difbcult to fully recapitulate pha'rmacologlcally.
in older and younger subjects when matched for physical\onetheless, molecular compounds can be exploited to encourage
activity levels [276,277]. However, several studies haveindicatetﬁ".]"[C.)Chond”aI blloge.ne3|s.and Improve mitochondrial heaI'Fh,
that a variety of organelle functions remain depressed (—:tV(—:tf'”."l.ar to that which is achieved following an endurance exercise
when physical activity levels between young and old subjectdr@ning regimen. The utility of these drugs extends beyond
are carefully matched [35,278], suggesting true age-relateanrpv'r.‘g ath!et|c performance, as improving m|t0chondr|al
debcits in mitochondrial function. For example, older humandudlity is a viable strategy to enhance systemic health and
subjects have exhibited mild organelle uncoupling, greatero"’ltholog“es associated with numerous diseases.

mitochondrial permeability transition pore (mtPTP) sensitization,
and a 3-fold greater fraction of endonuclease G positiwf‘ICAR

myonuclei [276], suggesting a greater propensity to underg®&-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is an
apoptosis. Nonetheless, this conclusion remains controversiahalogue of AMP, and an intermediate in the synthesis pathway of

Although it is abundantly clear that exercise promotes positive
gdaptations within muscle for tissue function and energy
etabolism, there are portions of the population that are unable or
isinclined to participate in regular physical activity. As a result,
e search for pharmacological agents which activate molecular
athways similar to those stimulated by exercise is an active

© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Soc
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and oxidative phosphorylation in skeletal muscle [91,289D293],
and induces a shift in muscle Pbre composition towards that
of a OslowerO muscle [289]. Systemically, this contributes to an
increase in basal oxygen consumption and a notable improvement
in endurance exercise performance [289,292]. These data suggest
that AICAR treatment brings about mitochondrial adaptations
that are similar to that of endurance exercise. Despite the large
number of positive adaptations that AICAR can induce in skeletal
muscle, the true utility of AICAR alone as a pharamacotherapeutic
agent or as an Oexercise pilld has been brought into question for a
number of reasons, including off-target cellular effects, compound
half-life in vivo and oral bioavailability when administered alone
[294,295]. Developing techniques to improve the bioavailability

of AICAR, or compounds to more specibcally target AMPK in
skeletal muscle without experiencing undesired cellular effects,
are certainly areas of interest.

TSI]%.IW_\=I unit

Mitochondrial Content

Young Young Old Old Old Old GW501516

T1 T1 T1 T2 This c;ompound was developed several decades ago as a selective
agonist for the nuclear receptor PPAR [296]. In skeletal
muscle, PPAR/ has been identibed as a positive transcriptional
regulator of fatty acid oxidation, mitochondrial metabolism
and a slower muscle bPbre phenotype [297D299], and is thus
One way to determine the answer to this controversial question is to compare the @itochoirdiitive agent for therapy. Activation of PPAR by
adaptation of young and old subjects to training. In this hypothetical graph based@mmgﬁ increases the expression of genes involved in energy
data, the mitochondrial content in young, healthy, untrained skeletal muscle is Lﬁ?ﬂf%?fﬁfﬁ‘ijg fatty acid oxidation and transport [292 3009303] and

at a value of 2)( With an imposed training regimen (e.yO#684 for 6 weeks in . . . R o
humans, or 1 week of chronic contractile activity in rodent models), a typical stron@afﬁhé%non PGC-1 for this effect [302]. However, its ability

in mitochondrial content can be represented by a 50% increase, up to 3 units, refPedBiéliug@ mitochondrial biogenesis in skeletal muscle under
change () of 1 absolute u.(This degree of adaptation manifests because all mecHaasailsconditions has been questioned [292,301,302,304]. Instead,
governing mitochondrial content are intact and responsive to the training protocol \&#@n&t6 appears to produce large improvements in endurance
age, and in the absence of other disease, skeletal muscle may lose 40% of its '@Fﬂﬁ’r’ﬁf&ﬁce, mitochondrial content and a shift towards a slower
content, to alevel approximately 60 % of what is observed in young, ui@aiiieemus eb(re type composition when combined with endurance exercise

a similar training regimen of therstevorkload (T1, e.g. 78%max) and duration . . .
is applied to aged skeletal muscle, two scenarios may resulb)|rathadegitétion training [292]' Further, when administered alongS|de AICAR,

signi cantly less than a 50% increase reveals that the exercise level is incapable2diréBef@gse in the expression of a number of genes involved
mitochondrial content in aged muscle. This suggests that the impairment in mitocoxidedive metabolism is observed [292]. Due to some of the
contentwith age is not simply due to inactivity, butalso aresult of decrements in thegfodamastlioned drawbacks of AICAR treatment by itself, the use
mechanisms of mitochondrial biogenesis (e.g. upstream signalling mechanisms, §apseUBi91 516 in conjunction with a more specibc AMPK agonist

of genes etc.) that cannot be reversed by exercise alone. In the s&oifidhecena r#\/ ; : : :
same relative workload paradigm elicits a 50% increase relative to the starting pﬁi? IIB,qh‘fflspreferred route to increasing mitochondrial volume.

can be viewed as the same adaptive response in the young and aged muscle, indicating that

the decrement in mitochondrial content in the aged muscle is simply due to the inactivity

accompanying aging, and can be fully reversed by an appropriate physical activit)sq $RANGators

It also suggests that the molecular signalling mechanisms remain responsive to training in aged

individuals. This adaptation is the same percentage increase as in young muscle, [Retheamneetial

mitochondrial content of the muscle still falls below that seen in young, untrained subjects . . .

because of the lower starting level prior to training (C). Further interpretations aRESY¥&FREOl is a natural occurring polyphenol, which has garnered

if the aged muscle is trained at thalssoheeorkload as the young muscle (T2). Tiaétention in recent years for its proposed role in disease

may not be possible to achieve in human subjects, but can be accomplished usim@\m}lmiﬂm and antioxidant capabilities [305,306]_ This compound

contractile activity paradigm in rdgefitsig workload would represent a greater relpiy@ also been recognized as an upstream activator of SIRT1

workload for the aged muscle because of its lower initial mitochondrial content, T\l(bt(: -'7?513'09] a deacetylase which has a well-established role in
itotRhondrial !

greater stimulus for adaptation. The expectation, in the absence of an impaired . . .
biogenesis activation pathway, is an increase in mitochondria of the same absoluf&H H&lﬂ; mitochondrial function and mass [10,310] through the

or more, as in young muscle (kel unit) if the signalling pathway towards biogene acetylation and activation of PGC-{Figure 1) [311,312]. In
fully intact. The absence of this response would suggest that the biogenesis pathwE9@enfgjigeatment with resveratrol has revealed increases in kinase
in aged muscle. signalling towards mitochondrial biogenesis, enriched expression
of mitochondrial genes and proteins, as well as elevations
inosine monophosphate [286,287]. As an AMP analogue, it cain mitochondrial volume in skeletal muscle [10,308,309,313],
allosterically activate and promote the phosphorylation of AMPK,an effect which is enhanced when resveratrol is administered
a kinase which is intimately involved in metabolic sensing and theconcomitant with an exercise programme [10]. In turn, this
control of muscle adaptation to exercise [288]. When activated bgontributes to an improvement in muscle function and whole-body
AICAR, AMPK phosphorylates PGC-1 increasing its activity, endurance performance [10,314]. Unfortunately, recent results
as well as its cooperation with other transcription factors tofrom human studies utilizing resveratrol supplementation have
activate its own promoter [90,92]. This causes an increase in botshown mixed success [315D319], perhaps owing to differences
PGC-1 mRNA and protein contentin muscle celtsvirro andin  in study design, outcome measures, target population, treatment
musclein vivo [58,92,94,289D291]. Consequently, this augmentdength and dose, in addition to other confounding variables. Thus,
the expression of many genes related to fatty acid oxidatiortontinued attention to optimizing resveratrol dose and duration

Figure 3 Is the reduction in mitochondrial content in aged muscle due to
‘aging’ per seor due to the inactivity which accompanies aging?

© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
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for the purpose of improving mitochondrial content and function 5

in human skeletal muscle is still of value.
6

NAD+ precursors 7

NAD + is a cofactor for SIRT1, and may be another means by
which this deacetylase may be activated. Increasing intracellular 8
concentrations of precursors to NAD, such as nicotinamide
riboside (NR), has been considered a worthwhile means to
enhance mitochondrial biogenesis [320]. Indeed, oral intake of ®
NR elevates the NADG- content in multiple tissues, increases
mitochondrial content and cristae density in skeletal muscle,;q
and enhances endurance exercise performance [321,322]. Further,
treatment with acipimox, a niacin derivative and another NAD
precursor, improves mitochondrial biogenesis and function both11l
in vitro and in human skeletal muscle vivo [323]. The
efbcacy of NAD+ precursors is promising for the treatment of
various myopathies, which are characterized by compromise
mitochondria, as these compounds can boost mitochondrial gene
expression and rescue mitochondrial function [322,324]. 13

CONCLUSIONS

Mitochondrial research in muscle has progressed at an astonishing
rate in recent years thanks to substantial improvements in
molecular and biochemical techniques, along with advances ins
animal and cell culture models used to study the organelle.
It has become abundantly clear that there are a number ofl6
intersecting and overlapping molecular pathways that control
mitochondrial reticulum connectivity, volume and function. At
the same time, research is only beginning to scratch the surfacd’
in terms of uncovering novel pathways and factors controlling
mitochondrial degradation and turnover. Developing a betterg
understanding of the interplay between the pathways controlling
organelle biogenesis and degradation is critical to the development
of physiological or pharmaceutical therapies to optimize organelle19
health within muscle. This knowledge will be crucial to improving
the state of the mitochondrial networks in instances where it is
compromised, such as during muscle inactivity, aging or disease

14
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